
THEORY OF STOCHASTIC PROCESSES

ANDRZEJ ŁUCZAK

In all our considerations we shall assume that we are given a fixed
probability space (Ω,F, P), and that all random variables in question
are defined on it.

Definition. A stochastic process is a family of random variables
(Xt : t ∈ T), where T is an arbitrary index set. A stochastic pro-
cess is sometimes called also a random function.

Remark. Due to the arbitrariness of the set T, we have e.g. that a ran-
dom vector (X1, . . . , Xn) is a stochastic process (T = {1, . . . , n}), or
that a sequence of random variables (X1, X2, . . . ) is a stochastic pro-
cess (T = N). From the point of view of the theory of stochastic pro-
cesses these cases are not interesting and in general we shall assume
that T is an interval on the line (usually T = [a, b] or T = [0, ∞), or
T = R).

Let us notice that the definition above gives rise to three different
ways of looking at a stochastic process. First, a process is simply a
family of random variables. Second, a process is a function of two
variables T×Ω 3 (t, ω) 7→ Xt(ω) with real values such that for each
fixed t, the function Ω 3 ω 7→ Xt(ω) is measurable. Third (most
‘sofisticated’), a process is a map which to each element ω ∈ Ω as-
signs the function T 3 t 7→ Xt(ω) defined on T with real values (thus
a process is here an ‘infinite dimensional random variable’ mapping
Ω in RT, analogously to the case T = {1, . . . , n} where a process is
an n-dimensional random variable: Ω 3 ω 7→ (X1(ω), . . . , Xn(ω)) ∈
Rn). Because of this last situation a stochastic process is often de-
noted by (X(t) : t ∈ T) (or a little more precisely (X(t, ·) : t ∈ T))
and then the functions t 7→ Xt(ω) mentioned above have a simple
notation X(·, ω). These functions are called samples or trajectories or
realisations of the process.

If we consider a process as a function of two variables, then we
also use the notation X(·, ·), and then Xt(ω) = X(t, ω).

Definition. A stochastic process (Xt : t ∈ T) is said to be continu-
ous with probability one, if its samples are continuous with probability
one, i.e. if the set {ω : function X(·, ω) is continuous} is an event
and has probability one (in other words, if almost all samples are
continuous).
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In the definition above one important element can be seen. Namely,
in order that one can speak about the continuity of samples, a topol-
ogy in the set T must be assumed (possibly nontrivial). This is why
the case of finite T or T = N is not interesting because on such sets
all functions are continuous (of course, under a natural assumption
that these sets are given the discrete topologies).

Definition. A process (Xt : t ∈ T) is said to be continuous in probabil-
ity at point t0 ∈ T, if

Xt −→
t→t0

Xt0 in probability.

A process is said to be continuous in probability, if it is continuous in
probability at each point.

The comment about the previous definition can (and should) be
repeated here, namely, in the set T there must be some topology in
order that one can speak about convergence t→ t0.

The next theorem shows that the continuity with probability one
of a stochastic process is a stronger property than the continuity in
probability of this process.

Theorem 1. If a stochastic process (Xt : t ∈ T) is continuous with proba-
bility one, then it is continuous in probability.

Proof. Indeed, let

A = {ω : function X(·, ω) is continuous}.

We have P(A) = 1, and for ω ∈ A and arbitrary t0 the continuity
of the samples X(·, ω) yields Xt(ω) −→

t→t0
Xt0(ω). Thus Xt −→

t→t0
Xt

with probability one (for all ω ∈ A), so Xt −→
t→t0

Xt0 in probability, which

means the continuity in probability of the process at point t0. The
arbitrariness of t0 yields the continuity in probability of the process.

�

Problem 1. If Ω is a discrete space, then the continuity in probabil-
ity of the process (Xt : t ∈ T) is equivalent to the continuity of all
samples.

Solution. The continuity in probability yields that for arbitrary
t0 ∈ T we have Xt −→

t→t0
Xt0 in probability. Since Ω is discrete it

follows that Xt −→
t→t0

Xt0 with probability one, i.e. Xt(ω) −→
t→t0

Xt0(ω)

for each ω ∈ Ω (cf. Problem 1 in the first part of the lecture). This
means that for each ω the sample X(·, ω) is continuous at t0, i.e. all
samples are continuous at t0. Since t0 was arbitrary the conclusion
follows.
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Problem 2. Let Ω = [0, 1], F = B([0, 1]), P — Lebesgue measure,
T = [0, 1]. Define on Ω functions Xt by the formula

Xt(ω) =

{
0, for ω 6= t
1, for ω = t

.

Show that the process (Xt : t > 0) is continuous in probability.

Solution. Since for each fixed t the function Xt takes only two values,
it is measurable, which proves that Xt is a random variable, so
(Xt : t > 0) is a stochastic process. For arbitrary t, t0 ∈ [0, 1], t 6= t0,
we have

|Xt(ω)− Xt0(ω)| =
{

1, if ω ∈ {t0, t}
0, otherwise

thus for arbitrary 0 < ε < 1

P({ω : |Xt(ω)− Xt0(ω)| > ε}) = P({ω : |Xt(ω)− Xt0(ω)| = 1})
= P({t, t0}) = 0

which shows the claim.

Let us note that all samples of the process above are discontinuous
functions (for fixed ω, the sample X(·, ω) has a jump equal to one at
point t = ω), so we have an example of a process continuous in
probability which is not continuous with probability one.

Theorem 2. Let (Xt : t ∈ T), T — interval in R, be a stochastic process
continuous in probability, and let f : R → R be a continuous function.
Then the process ( f (Xt) : t ∈ T) is continuous in probability.

Proof. Assume for the contrary that the process ( f (Xt) : t ∈ T) is
not continuous in probability. Then there exists t0 ∈ T such that
f (Xt) 9

t→t0
f (Xt0) in probability, so there exists ε0 > 0 such that

P(| f (Xt)− f (Xt0)| > ε0) 9
t→t0

0.

It follows that there are δ > 0 and a sequence tn → t0, such that

(1) P(| f (Xtn)− f (Xt0)| > ε0) > δ for all n ∈N.

On account of continuity in probability of the process (Xt : t ∈ T)
we obtain

Xtn → Xt0 in probability,
so from Theorem 2 in the first part of the lecture it follows that there
is a subsequence

(
tkn

)
such that

Xtkn
→ Xt0 with probability one.

This in turn means that there is an event A such that P(A) = 1, and
for ω ∈ A we have

Xtkn
(ω)→ Xt0(ω).
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Since f is continuous, we obtain that for ω ∈ A

f
(
Xtkn

(ω)
)
→ f

(
Xt0(ω)

)
,

thus
f
(
Xtkn

)
→ f

(
Xt0

)
with probability one.

In particular,
f
(
Xtkn

)
→ f

(
Xt0

)
in probability,

which contradicts the relation (1) which should hold also for the sub-
sequence (tkn) of the sequence (tn). �

Problem 3. Let X be a symmetric random variable such that
P(X = 0) = 0, and let Y be an arbitrary random variable. Define a
stochastic process (Zt : t > 0) by the formula

Zt = t(X + t) + Y.

Find the probability that the samples of the process (Zt : t > 0) are
increasing functions.

Solution (1. approach (general)). We must find

P(Zt1 < Zt2 for all 0 6 t1 < t2)

=P(Zt2 − Zt1 > 0 for all 0 6 t1 < t2).

For fixed 0 6 t1 < t2, we have

{ω : Zt2(ω)− Zt1(ω) > 0}
={ω : (t2(X(ω) + t2) + Y(ω))− (t1(X(ω) + t1) + Y(ω)) > 0}
={ω : (t2 − t1)X(ω) + (t2

2 − t2
1) > 0}

={ω : (t2 − t1)(X(ω) + (t1 + t2)) > 0}
={ω : X(ω) + (t1 + t2) > 0} = {ω : X(ω) > −(t1 + t2)}.

Hence

{ω : Zt2(ω)− Zt1(ω) > 0 for all 0 6 t1 < t2}
={ω : X(ω) > −(t1 + t2) for all 0 6 t1 < t2}
={ω : X(ω) > 0}.

The condition that the random variable X is symmetric means, by
definition, that for arbitrary B ∈ B(R) we have

P(X ∈ B) = P(X ∈ −B),

where −B = {−x : x ∈ B}. In particular, for B = (0, ∞), we get

P(X > 0) = P(X ∈ (0, ∞)) = P(X ∈ (−∞, 0)) = P(X < 0).

Further we have

1 = P(X < 0) + P(X = 0) + P(X > 0)

= P(X < 0) + P(X > 0) = 2P(X > 0),
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which yields

P(X > 0) =
1
2

.

Finally,

P({ω : Zt2(ω)− Zt1(ω) > 0 for all 0 6 t1 < t2})
=P({ω : X(ω) > 0})

=P({ω : X(ω) > 0}) + P({ω : X(ω) = 0}) = 1
2

.

2. approach (concrete). For any ω ∈ Ω, the sample is the function

[0, ∞) 3 t 7→ t(X(ω) + t) + Y(ω),

i.e. it is a quadratic function. Since a constant term can be neglected
while considering monotonicity, it is enough to consider the function

[0, ∞) 3 t 7→ t(X(ω) + t).

This function has two zeros: 0 i −X(ω), and increases in the interval
[0, ∞) if and only if −X(ω) 6 0, i.e. if X(ω) > 0. The probability of
this event was calculated at point 1 and equals 1

2 .

Definition. Assume that in T there is a σ-field M of subsets of T.
The process (Xt : t ∈ T) is said to be measurable if it is measurable
as a function of two variables T ×Ω 3 (t, ω) 7→ Xt(ω) with respect
to the product σ-field M⊗ F — σ-field generated by the sets of the
form B× A, B ∈ M, A ∈ F. (Since we consider here a process as a
function of two variables, the most convenient notation is X(·, ·)).
Problem 4. Let T = [0, ∞), M = B([0, ∞)), and let the process X(·, ·)
be measurable. Let τ : Ω → [0, ∞) be a random variable. Define a
function Xτ : Ω→ R by the formula

Xτ(ω) = Xτ(ω)(ω) = X(τ(ω), ω)

Show that Xτ is a random variable.

Solution. Let a function f : Ω → [0, ∞) ×Ω be defined by the for-
mula

f (ω) = (τ(ω), ω).
For arbitrary A ∈ F and B ∈ B([0, ∞)), we have

f−1(B× A) = {ω : f (ω) ∈ B× A} = {ω : (τ(ω), ω) ∈ B× A}
= {ω : τ(ω) ∈ B, ω ∈ A} = {ω : τ(ω) ∈ B} ∩ A

= τ−1(B) ∩ A ∈ F,

since by virtue of measurability of τ, τ−1(B) ∈ F. Thus the function
f is measurable. Since

Xτ(ω) = X(τ(ω), ω) = (X ◦ f )(ω),

Xτ is measurable as a composition of measurable functions.
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Remark. Random variables τ as above are called stopping times of
the process (Xt : t ∈ T). They play a significant role in martingale
theory. If, for instance, we are given a sequence of random variables
(X1, X2, . . . ) and τ : Ω→N, then Xτ = Xn on the set
{ω : τ(ω) = n}.

Problem 5. Prove that a stochastic process (Xt : t ∈ (0, 1]) with all the
samples right continuous is measurable.

Solution. Define functions Xn : [0, 1]×Ω→ R by the formula

Xn(t, ω) = X
( k

n
, ω
)

for t ∈
(

k− 1
n

,
k
n

]
, k = 1, . . . , n,

i.e.

Xn(t, ω) =
n

∑
k=1

X
( k

n
, ω
)

χ( k−1
n , k

n

](t),
where χE is the indicator function of the set E:

χE(t) =

{
0, dla t /∈ E
1, dla t ∈ E

.

For arbitrary B ∈ B(R), and arbitrary fixed k = 1, . . . , n, we have(
X
( k

n
, ·
)

χ( k−1
n , k

n

])−1
(B) =

{
(t, ω) : X

( k
n

, ω
)

χ( k−1
n , k

n

](t) ∈ B
}

=
{
(t, ω) : 0 ∈ B, χ( k−1

n , k
n

](t) = 0
}
∪

∪
{
(t, ω) : X

( k
n

, ω
)
∈ B, χ( k−1

n , k
n

](t) = 1
}

=
{
(t, ω) : 0 ∈ B, χ( k−1

n , k
n

](t) = 0
}
∪

∪
((k− 1

n
,

k
n

]
×
{

ω : X
( k

n
, ω
)
∈ B

})
=
{
(t, ω) : 0 ∈ B, χ( k−1

n , k
n

](t) = 0
}
∪
((k− 1

n
,

k
n

]
× X

( k
n

, ·
)−1

(B)
)

.

The second set in the union above belongs to the σ-field B((0, 1])⊗F,

since certainly
( k−1

n , k
n
]
∈ B((0, 1]) and X

(
k
n , ·
)−1

(B) ∈ F because

X
(

k
n , ·
)

is a random variable. For the first set, we have that it is

empty if 0 /∈ B, but if 0 ∈ B, it equals
(
(0, 1]r

( k−1
n , k

n
])
×Ω, so in

both the cases this set belongs to the σ-field B((0, 1]) ⊗ F. Conse-

quently, the function X
(

k
n , ·
)

χ( k−1
n , k

n

] is measurable as a function of

two variables (t, ω), thus Xn is measurable as a sum of measurable
functions.
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Let now t and ω be arbitrary and fixed, and let ε > 0 be arbitrary.
The right-hand continuity of the sample X(·, ω) at point t yields that
there exists δ > 0 such that for all t′ satisfying the inequality
0 < t′ − t < δ we have

|X(t′, ω)− X(t, ω)| < ε.

Let n0 be such that 1
n0

< δ. For each n > n0, there is kn ∈ {1, . . . , n}

such that t ∈
(

kn−1
n , kn

n

]
, so

|Xn(t, ω)− X(t, ω)| =
∣∣∣X(kn

n
, ω
)
− X(t, ω)

∣∣∣ < ε,

since 0 < kn
n − t < 1

n < δ. This shows that

lim
n→∞

Xn(t, ω) = X(t, ω),

consequently, X(·, ·) is a measurable function as a limit of measur-
able functions.

Remark. The set T = (0, 1] in the problem above was taken only for
the sake of simple notation. In fact, the measurability of the process
proved in this problem holds if T is an arbitrary interval T ⊂ R (a
proof needs only a small change of notation).

Remark. It can be proven that under an additional (but customary)
assumption that (Ω,F, P) is complete, a process with samples right-
continuous with probability one is measurable.

Definition. By the finite dimensional distributions of a stochastic pro-
cess (Xt : t ∈ T) are meant the distributions of all random vectors
(Xt1 , . . . , Xtn) for arbitrary t1, . . . , tn ∈ T, and arbitrary n = 1, 2, . . . .

For the finite dimensional distributions of a process the symbol
µt1,...,tn is sometimes used, so we have

µt1,...,tn(B) = P((Xt1 , . . . , Xtn)
−1(B))

= P({ω : (Xt1(ω), . . . , Xtn(ω)) ∈ B}), B ∈ B(Rn).

Definition. Processes (Xt : t ∈ T) and (Yt : t ∈ T) are said to be
equivalent if for every t ∈ T

P(Xt = Yt) = 1, equivalently P(Xt 6= Yt) = 0.

In such a case we speak that the process (Yt) is a modification of the
process (Xt) (or that the process (Xt) is a modification of the process
(Yt)).

Theorem 3. Equivalent processes have the same finite dimensional distri-
butions.
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Proof. Let the processes (Xt : t ∈ T) and (Yt : t ∈ T) be equivalent.
For arbitrary fixed t1, . . . , tn ∈ T, let

A1 = {ω : Xt1(ω) = Yt1(ω)}, . . . , An = {ω : Xtn(ω) = Ytn(ω)},
A = A1 ∩ · · · ∩ An.

From the equivalence of the processes (Xt : t ∈ T) and (Yt : t ∈ T),
it follows that P(Ak) = 1 for k = 1, . . . , n, so P(A) = 1. Moreover,
for ω ∈ A, we have

(Xt1(ω), . . . , Xtn(ω)) = (Yt1(ω), . . . , Ytn(ω)).

Note that for an arbitrary event C, we have

C = (A ∩ C) ∪ (A′ ∩ C),

so
P(C) = P(A ∩ C) + P(A′ ∩ C) = P(A ∩ C),

because
P(A′ ∩ C) 6 P(A′) = 0.

For arbitrary B ∈ B(Rn), the relations above yield

P({ω : (Xt1(ω), . . . , Xtn(ω) ∈ B})
=P(A ∩ {ω : (Xt1(ω), . . . , Xtn(ω)) ∈ B})
=P(A ∩ {ω : (Yt1(ω), . . . , Ytn(ω)) ∈ B})
=P({ω : (Yt1(ω), . . . , Ytn(ω)) ∈ B}),

which shows that the distributions of the random vectors (Xt1 , . . . , Xtn)
and (Yt1 , . . . , Ytn) are the same. �

Let us now introduce an important class of processes.

Definition. A stochastic process (Xt : t ∈ T) is said to be of the
second order if for each t ∈ T, we have EX2

t < ∞. The correlation
function K of such a process is defined by the formula

K(s, t) = cov(Xs, Xt) = E(Xs −EXs)(Xt −EXt)

= EXsXt −EXsEXt, s, t ∈ T.

For second order processes yet another mode of continuity may be
introduced.

Definition. A stochastic process (Xt : t ∈ T) of the second order is
said to be continuous in the mean at point t0 ∈ T if

E(Xt − Xt0)
2 −→

t→t0
0.

A process is said to be continuous in the mean if it is continuous in the
mean at every point.

Theorem 4. If a process (Xt : t ∈ T) is continuous in the mean at point
t0 ∈ T, then it is continuous in probability at this point.
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Proof. The proof follows from Chebyshev’s inequality. Namely, for
arbitrary ε > 0, we have

P(|Xt − Xt0 | > ε) = P(|Xt − Xt0 |2 > ε2) 6
E(Xt − Xt0)

2

ε2 ,

and from the assumption, it follows that the right-hand side of the
inequality above tends to zero. �

Lemma 5. If a second order process (Xt : t ∈ T) is continuous in the mean
at point t0 ∈ T, then

(
EX2

t
)1/2 −→

t→t0

(
EX2

t0

)1/2.

Proof. For arbitrary square integrable random variables X i Y we
have on account of the Schwarz inequality

EXY 6
(
EX2)1/2(

EY2)1/2,

thus

EX2 − 2
(
EX2)1/2(

EY2)1/2
+ EY2 6 EX2 − 2EXY + EY2,

i.e. ((
EX2)1/2 −

(
EY2)1/2

)2
6 E(X−Y)2.

The inequality above yields, after taking X = Xt, Y = Xt0 , that if
E
(
Xt − Xt0

)2 −→
t→t0

0, then

(
EX2

t
)1/2 −→

t→t0

(
EXt0

)1/2. �

Let (Xt : t ∈ T) be a second order process and let

L(s, t) = EXsXt, s, t ∈ T.

We have the following characterisation of the continuity in the mean
of a process.

Theorem 6. For a second order process, the following conditions are equiv-
alent:

(i) the process is continuous in the mean,
(ii) the function L is continuous (as a function of two variables).

Proof. Assume that the process is continuous in the mean. Using the
Schwarz inequality, we have for arbitrary s0, t0 ∈ T

|L(s, t)− L(s0, t0)| 6 |L(s, t)− L(s0, t)|+ |L(s0, t)− L(s0, t0)|
=|EXsXt −EXs0 Xt|+ |EXs0 Xt −EXs0 Xt0 |
=|E(Xs − Xs0)Xt|+ |EXs0(Xt − Xt0)|

6
(
E(Xs − Xs0)

2)1/2(
EX2

t
)1/2

+
(
EX2

s0

)1/2(
E(Xt − Xt0)

2)1/2.



10 ANDRZEJ ŁUCZAK

From the assumption and Lemma 5, it follows that the right hand
side of the inequality above tends to zero for s → s0 and t → t0,
which means that the function L is continuous.

Assume now that the function L is continuous. For arbitrary
t0 ∈ T, we have

E
(
Xt − Xt0

)2
= EX2

t − 2EXtXt0 + EX2
t0

= L(t, t)− 2L(t, t0) + L(t0, t0)

and the right hand side of the inequality above tends to zero for
t → t0, which means that the process is continuous in the mean at
point t0. Since t0 is arbitrary, we obtain the continuity in the mean of
the process at each point. �

For the process (Xt : t ∈ T), denote

m(t) = EXt

under the assumption that the expectation is finite. Analogously to
Theorem 6 we get

Theorem 7. Let (Xt : t ∈ T) be a second order process such that the
function m is continuous. The following conditions are equivalent:

(i) the process is continuous in the mean,
(ii) the correlation function K is continuous (as a function of two vari-

ables).

In the next theorem, we shall prove important properties of the
correlation function of a process.

Theorem 8. Let K be the correlation function of a second order process
(Xt : t ∈ T). Then

(i) K(s, t) = K(t, s) for arbitrary s, t ∈ T,
(ii) K is positive definite, i.e. for arbitrary t1, . . . , tn ∈ T and arbi-

trary complex numbers z1, . . . , zn we have
n

∑
j,k=1

K(tj, tk)zjzk > 0.

Proof. For simplicity denote

X̂t = Xt −EXt.

Then
K(s, t) = cov(Xs, Xt) = EX̂sX̂t.

Point (i) is obvious since

K(t, s) = EX̂tX̂s = EX̂sX̂t = K(s, t).
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As for point (ii), we shall show first that for arbitrary real u1, . . . , un
we have

n

∑
j,k=1

K(tj, tk)ujuk > 0.

Indeed, from the properties of expectation we obtain
n

∑
j,k=1

K(tj, tk)ujuk =
n

∑
j,k=1

(
EX̂tj X̂tk

)
ujuk =

n

∑
j,k=1

E
(
ujX̂tj

)(
ukX̂tk

)
=E

( n

∑
j,k=1

(
ujX̂tj

)(
ukX̂tk

))
= E

( n

∑
j=1

ujX̂tj

)( n

∑
k=1

ukX̂tk

)
=E

( n

∑
j=1

ujX̂tj

)2
> 0.

For arbitrary complex numbers z1, . . . , zn, we have

zj = aj + ibj, where aj, bj ∈ R

and
zjzk = ajak + bjbk + i(akbj − ajbk),

so
n

∑
j,k=1

K(tj, tk)zjzk =
n

∑
j,k=1

K(tj, tk)ajak +
n

∑
j,k=1

K(tj, tk)bjbk

+ i
( n

∑
j,k=1

K(tj, tk)akbj −
n

∑
j,k=1

K(tj, tk)ajbk

)
.

The first two sums on the right-hand side of the equality above are,
on account of the first part of the proof, nonnegative. For the next
two sums we have by virtue of point (i)

n

∑
j,k=1

K(tj, tk)akbj =
n

∑
j,k=1

K(tk, tj)akbj =
n

∑
l,r=1

K(tl, tr)albr

after substitution k = l, j = r, and
n

∑
j,k=1

K(tj, tk)ajbk =
n

∑
l,r=1

K(tl, tr)albr

after substitution k = r, j = l. This proves that
n

∑
j,k=1

K(tj, tk)akbj =
n

∑
j,k=1

K(tj, tk)ajbk,

and thus
n

∑
j,k=1

K(tj, tk)zjzk =
n

∑
j,k=1

K(tj, tk)ajak +
n

∑
j,k=1

K(tj, tk)bjbk > 0,



12 ANDRZEJ ŁUCZAK

which ends the proof. �

Now we shall analyse the situation when a process can be consid-
ered as a map of the space Ω into the space od functions defined on
the set T: Ω 3 ω 7→ X(·, ω) ∈ RT. Our first step will be introducing
in the space RT an appropriate σ-field.

Definition. Let t1, . . . , tn ∈ T, and let B ∈ B(Rn). By a cylindric
set Ct1,...,tn(B) with the base B and coordinates t1, . . . , tn we mean a
subset of RT defined as

Ct1,...,tn(B) = {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B}.
(In the definition above, x denotes a real-valued function defined on
the set T.)

Remark. As is seen, to a cylindric set belong, in general, plenty of
functions; the only restriction put on these functions is a restriction
on the values they take at the points t1, . . . , tn. For instance, if B is a
one-point set

B = {(a1, . . . , an)},
then to Ct1,...,tn(B) belong all functions which at the points t1, . . . , tn
take the values a1, . . . , an, respectively, and are arbitrary otherwise.

Example. Let T = {1, 2}. Then RT = R2, and we have for arbitrary
B, B1, B2 ∈ B(R)

C1(B) = {(x1, x2) ∈ R2 : x1 ∈ B} = B×R,

C2(B) = {(x1, x2) ∈ R2 : x2 ∈ B} = R× B,

C1,2(B1 × B2) = {(x1, x2) ∈ R2 : (x1, x2) ∈ B1 × B2} = B1 × B2.

Let us note that the representation of a cylindric set is not unique.
We have e.g. for arbitrary t′ ∈ T

Ct1,...,tn,t′(B×R) = {x ∈ RT : (x(t1), . . . , x(tn), x(t′)) ∈ B×R}
= {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B, x(t′) ∈ R}
= {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B} = Ct1,...,tn(B),

and similarly
Ct1,...,tn(B) = Ct′,t1,...,tn(R× B).

It follows that arbitrary cylindric sets can be written on the same
system of coordinates since we have for Ct1,...,tn(B1) and Cs1,...,sm(B2),

Ct1,...,tn(B1) = Ct1,...,tn,s1,...,sm(B1 ×Rm),

and
Cs1,...,sm(B2) = Ct1,...,tn,s1,...,sm(R

n × B2).

Theorem 9. The cylindric sets constitute a field.
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Proof. We have ∅ = Ct(∅) and RT = Ct(R) for arbitrary fixed t, thus
∅ and RT are cylindric sets.

For arbitrary cylindric set Ct1,...,tn(B), we have

Ct1,...,tn(B)′ = RT r {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B}
= {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B′} = Ct1,...,tn(B′),

thus the complement of a cylindric set is also a cylindric set.
Let Ct1,...,tn(B1) and Ct1,...,tn(B2) be arbitrary cylindric sets (as we al-

ready know, they can be written on the same system of coordinates).
We have

Ct1,...,tn(B1) ∪ Ct1,...,tn(B2) = {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B}
∪ {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B}
= {x ∈ RT : (x(t1), . . . , x(tn)) ∈ B1 ∪ B2}
= Ct1,...,tn(B1 ∪ B2),

thus a union of two cylindric sets is a cylindric set. �

The field of cylindric sets will be denoted by C. In the space RT,
we shall consider the σ-field σ(C) generated by the cylindric sets. In
this manner, we obtain a measurable space (RT, σ(C)).

Remark. The σ-field σ(C) is sometimes called the Borel σ-field of the
space RT, and is denoted by B(RT). This name is justified by the fact
that for finite T we have RT = Rn, and the σ-field generated by the
cylindric sets is just the Borel σ-field of subsets of Rn.

Remark. Despite its natural definition, it turns out that the σ-field
σ(C) has some deficiencies. Namely, it can be shown that for T being
an interval, to σ(C) do not belong the following classes of functions:
continuous functions, linear functions, polynomials, non-decreasing
functions, functions continuous at a fixed point.

Theorem 10. Let (Xt : t ∈ T) be a stochastic process. Define a map
X : Ω→ RT by the formula

(∗) X(ω)(t) = Xt(ω), ω ∈ Ω, t ∈ T.

Then X is measurable.
Conversely, for every measurable map X : Ω→ RT define a function Xt

on Ω by the formula

(∗∗) Xt(ω) = X(ω)(t), ω ∈ Ω.

Then (Xt : t ∈ T) is a stochastic process.
(The notation X(ω)(t) as above follows from the fact that X(ω) is a func-
tion on T.)
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Proof. For an arbitrary cylindric set Ct1,...,tn(B), we have

X−1(Ct1,...,tn(B)) = {ω : X(ω) ∈ Ct1,...,tn(B)}
= {ω : (X(ω)(t1), . . . , X(ω)(tn)) ∈ B}
= {ω : (Xt1(ω), . . . , Xtn(ω)) ∈ B}
= (Xt1 , . . . , Xtn)

−1(B) ∈ F,

and Lemma 2 in the first part of the lecture yields the measurability
of X.

Assume now that that the map X : Ω→ RT is measurable. For the
function Xt defined by the formula (∗∗), and for arbitrary B ∈ B(R),
the measurability of X yields

X−1
t (B) = {ω : Xt(ω) ∈ B} = {ω : X(ω)(t) ∈ B}

= {ω : X(ω) ∈ Ct(B)} = X−1(Ct(B)) ∈ F,

since Ct(B) ∈ σ(C), which proves the measurability of Xt, thus
(Xt : t ∈ T) is a stochastic process. �

Let X be a measurable map from Ω to RT. The distribution µX of
X is defined as a probability measure on (RT, σ(C)) by the formula

µX(E) = P(X−1(E)), E ∈ σ(C).

For the stochastic process (Xt : t ∈ T) and the map X defined by the
formula (∗), define on the probability space (Ω̃, F̃, P̃) = (RT, σ(C), µX)

a function X̃t, t ∈ T by the formula

X̃t(ω̃) = ω̃(t), ω̃ ∈ Ω̃ = RT.

For arbitrary B ∈ B(R), we have

X̃−1
t (B) = {ω̃ ∈ RT : X̃t(ω̃) ∈ B}

= {ω̃ ∈ RT : ω̃(t) ∈ B} = Ct(B) ∈ σ(C),

thus X̃t are measurable functions, hence (X̃t : t ∈ T) is a stochastic
process. This process is called the canonical process for the process
(Xt : t ∈ T).

Theorem 11. The processes (Xt : t ∈ T) and (X̃t : t ∈ T) have the same
finite dimensional distributions.
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Proof. For arbitrary t1, . . . , tn ∈ T and arbitrary B ∈ B(Rn), we have

pX̃t1 ,...,X̃tn
(B) =P̃({ω̃ ∈ RT : (X̃t1(ω̃), . . . , X̃tn(ω̃)) ∈ B})

=P̃({ω̃ ∈ RT : (ω̃(t1), . . . , ω̃(tn)) ∈ B})
=P̃(Ct1,...,tn(B)) = µX(Ct1,...,tn(B)) = P(X−1(Ct1,...,tn(B)))
=P({ω : X(ω) ∈ Ct1,...,tn(B)})
=P({ω : (X(ω)(t1), . . . , X(ω)(tn)) ∈ B})
=P({ω : (Xt1(ω), . . . , Xtn(ω)) ∈ B}) = µXt1 ,...,Xtn

(B). �

Now we are going to discuss fundamental Kolmogorov’s theorem
about the existence of a stochastic process with the finite dimensional
distributions given. Let (Xt : t ∈ T) be a stochastic process, and let
for arbitrary t1, . . . , tn ∈ T, µt1,...,tn be the distribution of the random
vector (Xt1 , . . . , Xtn), i.e.

µt1,...,tn(B) =P((Xt1 , . . . , Xtn)
−1(B))

=P({ω : (Xt1(ω), . . . , Xtn(ω)) ∈ B}), B ∈ B(Rn).

Thus we have a family of distributions

{µt1,...,tn : t1, . . . , tn ∈ T, n = 1, 2, . . . },
such that µt1,...,tn is a probability distribution on the space (Rn,B(Rn)).
Observe that this family fulfils the conditions:

1. For arbitrary t ∈ T

µt1,...,tn,t(B×R) = µt1,...,tn(B),

2. For an arbitrary permutation σ of the set {1, . . . , n}, and arbi-
trary B1, . . . , Bn ∈ B(R),

µt1,...,tn(B1 × · · · × Bn) = µtσ(1),...,tσ(n)(Bσ(1) × · · · × Bσ(n)).

Indeed, we have

µt1,...,tn,t(B×R) = P((Xt1 , . . . , Xtn , Xt) ∈ B×R)

= P((Xt1 , . . . , Xtn) ∈ B) = µt1,...,tn(B),

and

µt1,...,tn(B1 × . . . Bn) = P((Xt1 , . . . , Xtn) ∈ B1 × · · · × Bn)

= P(Xt1 ∈ B1, . . . , Xtn ∈ Bn)

= P(Xtσ(1) ∈ Bσ(1), . . . , Xtσ(n) ∈ Bσ(n))

= P((Xtσ(1) , . . . , Xtσ(n)) ∈ Bσ(1) × · · · × Bσ(n))

= µtσ(1),...,tσ(n)(Bσ(1) × · · · × Bσ(n)).

Conditions 1. and 2. are called the consistency conditions, and as is
seen from the reasoning above, they are necessary in order that the
distributions µt1,...,tn be the finite dimensional distributions of some
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stochastic process. It turns out that these conditions are also suffi-
cient.

Kolmogorov Theorem. Let for arbitrary t1, . . . , tn ∈ T, and arbitrary
n = 1, 2, . . . , µt1,...,tn be probability distributions on (Rn,B(Rn)) satis-
fying the consistency conditions 1. and 2. Then there exists a stochastic
process (Xt : t ∈ T) such that µt1,...,tn are its finite dimensional distribu-
tions.

The idea of the proof of this theorem is as follows. On the field
C of cylindric sets in the space RT we define a set function µ by the
formula

(2) µ(Ct1,...,tn(B)) = µt1,...,tn(B).

Because of the non-uniqueness of the representation of a cylindric set
it must be shown that this function is well-defined. This follows from
the consistency conditions. For a cylindric set Ct1,...,tn(B1× · · · × Bn),
we have e.g. two distinct representations

Ct1,...,tn(B1 × · · · × Bn) = Ct1,...,tn,t(B1 × · · · × Bn ×R))

= Ctσ(1),...,tσ(n)(Bσ(1) × · · · × Bσ(n)),

for arbitrary t ∈ T and an arbitrary permutation σ of the set {1, . . . , n},
thus according to the formula (2), we should have

µ(Ct1,...,tn(B1 × · · · × Bn)) = µt1,...,tn(B1 × · · · × Bn)

= µt1,...,tn,t(B1 × · · · × Bn ×R),

and

µ(Ct1,...,tn(B1 × · · · × Bn)) = µt1,...,tn(B1 × · · · × Bn)

= µtσ(1),...,tσ(n)(Bσ(1) × · · · × Bσ(n))),

but the equalities above hold true by virtue of the consistency condi-
tions. A similar situation occurs for an arbitrary cylindric set Ct1,...,tn(B).
Note that µ is non-negative, and we have

µ(∅) = µ(Ct(∅)) = µt(∅) = 0, µ(RT) = µ(Ct(R)) = µt(R) = 1,

and for disjoint Ct1,...,tn(B1) and Ct1,...,tn(B2), B1, B2 ∈ B(Rn), the sets
B1 and B2 are also disjoint, so

µ(Ct1,...,tn(B1) ∪ Ct1,...,tn(B2)) = µ(Ct1,...,tn(B1 ∪ B2)) = µt1,...,tn(B1 ∪ Bn)

= µt1,...,tn(B1) + µt1,...,tn(B2)

= µ(Ct1,...,tn(B1)) + µ(Ct1,...,tn(B2)),

thus µ is additive.
Next it is proven that µ satisfies the conditions of the extension of

measure theorem (the most difficult part), thus there exists a mea-
sure µ on σ(C) such that for an arbitrary cylindric set Ct1,...,tn(B) we
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have
µ(Ct1,...,tn(B)) = µ(Ct1,...,tn(B)).

Now we define

Ω = RT, F = σ(C), P = µ

and for every t ∈ T

Xt(ω) = ω(t), ω ∈ Ω.

For arbitrary B ∈ B(R), we have

X−1
t (B) = {ω ∈ RT : Xt(ω) ∈ B}

= {ω ∈ RT : ω(t) ∈ B} = Ct(B) ∈ F,

hence Xt are random variables, thus (Xt : t ∈ T) is a stochastic
process. Moreover, for arbitrary B ∈ B(Rn), we have

P((Xt1 , . . . , Xtn) ∈ B) = P({ω : (Xt1(ω), . . . , Xtn(ω)) ∈ B})
= P({ω : (ω(t1), . . . , ω(tn)) ∈ B})
= P(Ct1,...,tn(B)) = µ(Ct1,...,tn(B))
= µ(Ct1,...,tn(B)) = µt1,...,tn(B),

which shows that µt1,...,tn are the finite dimensional distributions of
the process (Xt : t ∈ T).

Observe that Xt above are defined exactly in the same way as X̃t
for the canonical process, and the proof of measurability of Xt is a
repetition of the proof of measurability of X̃t. The basic difference
consists in the fact that when defining the canonical process, we had
the measure µX on (RT, σ(C)) at our disposal (the distribution of the
‘infinite dimensional random variable’ X : Ω → RT defined by the
initial process), while in the Kolmogorov theorem this measure had
to be constructed.

In many aspects of probability theory, for instance, in laws of large
numbers or limit theorems, we assume independence of random
variables with given distributions. However, a priori it is not clear
at all if it is possible. Kolmogorov’s theorem shows that this is the
case. Namely, let µn, n = 1, 2, . . . , be arbitrary distributions on
(R,B(R)). For arbitrary t1, . . . , tn ∈ N, define distributions µt1,...,tn
on (Rn,B(Rn)) by the formula

µt1,...,tn = µt1 ⊗ · · · ⊗ µtn .

For arbitrary B ∈ B(Rn), we have

µt1,...,tn,t(B×R) = µt1 ⊗ · · · ⊗ µtn ⊗ µt(B×R)

= µt1 ⊗ · · · ⊗ µtn(B)µt(R)

= µt1 ⊗ · · · ⊗ µtn(B) = µt1,...,tn(B)
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and for arbitrary B1, . . . , Bn ∈ B(R) and a permutation σ of the set
{1, . . . , n}

µtσ(1),...,tσ(n)(Bσ(1) × · · · × Bσ(n))

=µtσ(1) ⊗ · · · ⊗ µtσ(n)(Bσ(1) × · · · × Bσ(n))

=µtσ(1)(Bσ(1)) . . . µtσ(n)(Bσ(n)) = µt1(B1) . . . µtn(Bn)

=µt1 ⊗ · · · ⊗ µtn(B1 × · · · × Bn) = µt1,...,tn(B1 × · · · × Bn),

thus the family of distributions {µt1,...,tn : t1, . . . , tn ∈N, n = 1, 2, . . . }
satisfies the consistency conditions. By virtue of Kolmogorov’s the-
orem, we infer that there exists a process (since T = N, it is a se-
quence) (Xn : n = 1, 2, . . . ), such that its finite dimensional distribu-
tions are equal to µt1,...,tn ; in particular, the distributions of the ran-
dom variables Xn equal µn.

For arbitrary t1, . . . , tn ∈ N, and arbitrary B1, . . . , Bn ∈ B(R), we
have

P(Xt1 ∈ B1, . . . , Xtn ∈ Bn) = P((Xt1 , . . . , Xtn) ∈ B1 × · · · × Bn)

µt1,...,tn(B1 × · · · × Bn) = µt1 ⊗ · · · ⊗ µtn(B1 × · · · × Bn)

=µt1(B1) . . . µtn(Bn) = P(Xt1 ∈ B1) . . . P(Xtn ∈ Bn),

which proves independence of the random variables Xt1 , . . . , Xtn ,
thus Xn are independent.

The Kolmogorov theorem, basic from the point of view of the ex-
istence of a process with given finite dimensional distributions, says
nothing about possible properties of the samples of such a process.
For example, if we wanted this process to be continuous with proba-
bility one, then, since the samples of this process in the construction
above are all functions on T, it would mean that the set of continuous
functions has measure one while, as we saw before, this set does not
belong to σ(C), consequently, it can not have any measure! In the
examples of two basic processes: Poisson’s and Wiener’s (Brownian
motion) that will be presented later, properties of the samples follow
from a special construction of these processes.

Now we are going to define an important class of stochastic pro-
cesses, namely, processes with independent increments.

Definition. A stochastic process (Xt : t > 0) is said to have indepen-
dent increments, if for arbitrary 0 6 t0 < t1 < · · · < tn the random
variables

Xt0 , Xt1 − Xt0 , . . . , Xtn − Xtn−1 (increments of the process)

are independent.

We finish our considerations with definitions of two extremely im-
portant stochastic processes.
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Definition. A stochastic process (Nt : t > 0) (traditional notation) is
a Poisson process, if

(1) N0 = 0 with probability one,
(2) the process has independent increments,
(3) for s < t the increments of the process have Poisson’s distri-

bution with parameter λ(t− s):

P(Nt − Ns = n) = e−λ(t−s) (λ(t− s))n

n!
, n = 0, 1, . . . ,

(4) the samples of the process are with probability one non-de-
creasing functions.

If in the definition above we require only the first three conditions,
then the existence of a Poisson process follows from Kolmogorov’s
theorem: using the independence of the increments we can find the
finite dimensional distributions, and then show that they satisfy the
consistency conditions. However, such an approach does not give
samples non-decreasing with probability one since the set of non-
increasing functions does not belong to the σ-field σ(C). To obtain
a Poisson process satisfying all conditions of the definition above a
special construction is employed.

Definition. A stochastic process (Wt : t > 0) (traditional notation) is
a Wiener process or Brownian motion, if

(1) W0 = 0 with probability one,
(2) the process has independent increments,
(3) for s < t the increments of the process have normal distribu-

tion N(0, t− s) with density:

f (x) =
1√

2π(t− s)
e−

x2
2(t−s) ,

(4) the samples of the process are with probability one continu-
ous functions.

A comment made for a Poisson process can be repeated here al-
most word for word: if in the definition above we require only the
first three conditions, then the existence of a Wiener process follows
from Kolmogorov’s theorem: using the independence of the incre-
ments we can find the finite dimensional distributions, and then
show that they satisfy the consistency conditions. However, such
an approach does not give samples continuous with probability one
since the set of continuous functions does not belong to the σ-field
σ(C). To obtain a Wiener process satisfying all conditions of the def-
inition above a special construction is employed.

A surprising property of a Wiener process is presented in the the-
orem below which ends our considerations.
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Theorem 12. The samples of a Wiener process are with probability one
functions not differentiable at any point (despite the fact that they are con-
tinuous functions!).

PROBLEMS TO SOLVE

A stochastic process (Xt : t ∈ T) is said to be bounded in probability
if

P(|Xt| > r) −→
r→∞

0 uniformly in t,

equivalently,
sup
t∈T

P(|Xt| > r) −→
r→∞

0.

The following two problems are analogous to known theorems of
calculus.

Problem 6. Let (Xt : t ∈ [a, b]), −∞ < a < b < +∞, be a stochas-
tic process continuous in probability. Show that then this process is
bounded in probability.

Problem 7. Let (Xt : t ∈ [a, b]), −∞ < a < b < +∞, be a stochas-
tic process continuous in probability. Show that then this process is
uniformly continuous in probability, i.e.

sup
|t−s|<h

P(|Xt − Xs| > h) −→
h→0

0.

Equivalently,
inf
|t−s|<h

P(|Xt − Xs| < h) −→
h→0

1.

Problem 8. Let (Xt : t ∈ [a, b]), −∞ < a < b < +∞, be a stochastic
process. Show that this process is continuous with probability one if
and only if for arbitrary ε > 0

P( sup
|t−s|<h

|Xt − Xs| > ε) −→
h→0

0.

Equivalently,
P( sup
|t−s|<h

|Xt − Xs| < ε) −→
h→0

1.

Problem 9. Let Ω = (0, 1), F = B((0, 1)), P — Lebesgue measure. For
t ∈ [0, ∞) define on Ω functions Xt by the formula

Xt(ω) =

{
0, dla ω > t
1, dla ω 6 t

, ω ∈ (0, 1).

(a) Show that the process (Xt : t > 0) is continuous in probabil-
ity.

(b) Show that the process (Xt : t > 0) is continuous in the mean.
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Problem 10. Let (Xt : t ∈ T) and (Yt : t ∈ T) be stochastic processes
continuous with probability one. Show that the process
(Xt + Yt : t ∈ T) is continuous with probability one.

Problem 11. Let (Xt : t ∈ T) and (Yt : t ∈ T) be stochastic processes
continuous in probability. Show that the process (Xt + Yt : t ∈ T) is
continuous in probability.

Problem 12. Let (Xt : t ∈ [a, b]), −∞ < a < b < +∞, be a stochastic
process continuous in probability. Show that then (X2

t : t ∈ [a, b])
is continuous in probability. Using this and Problem 11 show that
if processes (Xt : t ∈ [a, b]) and (Yt : t ∈ [a, b]) are continuous
in probability, then the process (XtYt : t ∈ [a, b]) is continuous in
probability.

Problem 13. Let Ω = (0, 1), F = B((0, 1)), P — Lebesgue measure,
T = [0, 1]. Let

Xt(ω) =

{
0, dla ω > t
t−ω, dla ω 6 t

, ω ∈ (0, 1).

(a) Show that the process (Xt : t ∈ [0, 1]) is continuous in proba-
bility.

(b) Show that the process (Xt : t ∈ [0, 1]) is continuous in the
mean.

Problem 14. Let Ω = (0, 1), F = B((0, 1)), P — Lebesgue measure,
T = [0, 1], and let A be an arbitrary finite subset of the interval (0, 1).
Let

Xt(ω) =

{
1, if t ∈ A and ω ∈ A
0, if t /∈ A or ω /∈ A

, ω ∈ (0, 1).

Show that the process (Xt : t ∈ [0, 1]) is continuous with probability
one.

Problem 15. Processes (Xt : t ∈ T) and (Yt : t ∈ T) are independent.
Let KX and KY be the correlation functions of the process (Xt) and
(Yt), respectively. Find the correlation function of the process
(Xt + Yt : t ∈ T).

Follow the steps indicated below to solve the following problem.

Problem 16*. Using Problem 7, prove Theorem 2.

(1) Since it is aimed to prove the continuity in probability at ar-
bitrary t0 ∈ T, it can be assumed that we consider a process
(Xt : t ∈ [a, b]) such that t0 ∈ [a, b]. On the interval [a, b] the
function f is uniformly continuous, thus for arbitrary ε > 0
there is δ > 0 such that for arbitrary x′, x′′ ∈ [a, b] satisfying
|x′ − x′′| < δ the inequality

| f (x′)− f (x′′)| < ε
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holds.
(2) Take arbitrary γ > 0. From Problem 7, it follows that there is

η > 0 such that for |t− t0| < η we have

P({ω : |Xt(ω)− Xt0(ω)| < η}) > 1− γ.

Let
At = {ω : |Xt(ω)− Xt0(ω)| < η}.

Then for |t− t0| < η, we have

P(At) > 1− γ.

(3) Putting ρ = min(δ, η), show that for |t− t0| < ρ, we have

P({ω : | f (Xt(ω))− f (Xt0(ω))| < ε}) > 1− γ,

showing the claim.
Follow the steps indicated below to solve the following problem.

Problem 17*. Let KX and KY be the correlation functions of the pro-
cesses (Xt : t ∈ T) and (Yt : t ∈ T), respectively. Show that
K = KXKY is the correlation function of some stochastic process
(Zt : t ∈ T).

First observe that the processes (Xt : t ∈ T) and (Yt : t ∈ T) need
not be defined on the same probability space. Thus let (Xt : t ∈ T) be
defined on a probability space (Ω1,F1, P1), and let (Yt : t ∈ T) be
defined on a probability space (Ω2,F2, P2). (Of course, it can be that
(Ω1,F1, P1) = (Ω2,F2, P2), but this does not change the construc-
tion). Define a new probability space (Ω,F, P) in the following way

Ω = Ω1 ×Ω2, F = F1 ⊗ F2, P = P1 ⊗ P2,

where

F =F1 ⊗ F2 = σ({A1 × A2 : A1 ∈ F1, A2 ∈ F2}) — the least
σ-field containing all sets of the form A1 × A2,

and P = P1 ⊗ P2 is the product measure. Recall that this product
measure is defined in such a way that we have

P1 ⊗ P2(A1 × A2) = P1(A1)P2(A2).

Define on (Ω,F, P) processes (X̂t : t ∈ T) and (Ŷt : t ∈ T) by the
formulae

X̂t(ω1, ω2) = Xt(ω1), Ŷt(ω1, ω2) = Yt(ω2).

(1) Show that the processes (X̂t : t ∈ T) and (Xt : t ∈ T) have
the same finite dimensional distributions (analogously for the
processes (Ŷt : t ∈ T) and (Ŷt : t ∈ T)), and infer that their
correlation functions are the same.

(2) Show that the processes (X̂t : t ∈ T) and (Ŷt : t ∈ T) are
independent.
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(3) Define on (Ω,F, P) a process (Zt : t ∈ T) by the formula

Zt = (X̂t −EX̂t)(Ŷt −EŶt),

and show that the correlation function of this process is a
product of the correlation functions of the processes
(Xt : t ∈ T) and (Yt : t ∈ T).

To pass the course a student should:
(1) solve at least two problems from the first (virtual) part,

AND
(2) solve at least four problems, including at least one starred

(problems 16 and 17), from the second part.
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