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1. PROLOGUE

The theory of stochastic processes is a more advanced part of Probability The-
ory. It deals with arbitrary families of random variables which often describe con-
crete situations. For example, if we want to describe the ‘dynamics’ of temperature
in Istanbul on the first of June, then its value at some specific time t (e.g. t=12:30) is
a value of a random variable Xt, and we can obtain information about the probabil-
ity that this temperature equals e.g. 25◦C, P(Xt = 25), on the basis of observations
made during, say, last hundred years. In this way, we obtain a family of random
variables Xt : t ∈ [0, 1] where 0 stands for the hour 0:00 of June 1, and 1 stands for
the hour 24:00 of the same day. Observe that in this case we can say almost noth-
ing about the probability space (Ω,F, P) on which these Xt’s are defined since we
don’t know all factors which affect the temperature! On the other hand, we can
estimate the distribution of Xt in an obvious way: if in the last hundred years the
temperature between 25 and 30 degrees at time t happened in 60 years then we
can say that P(25 6 Xt 6 30) ≈ 60

100 = 3
5 . Observe also that if we fix ω, then

the function [0, 1] 3 t 7→ Xt(ω) represents the temperature during the whole day
June 1. The family (Xt : t ∈ [0, 1]) is an example of a stochastic process. Thus we
shall consider families (Xt : t ∈ T) of random variables indexed by an arbitrary set
T (but mainly T being an interval in R), and investigate their various properties.
It is assumed that the participants of the course have some knowledge of proba-
bility theory, in particular, the notions of a probability space, random variable and
its distribution, random vector, expectation and variance of a random variable,
though some of these notions will be reminded. Some knowledge of measure and
integral theory would also be helpful.

2. PROBABILITY THEORY

In all our considerations we shall assume that we are given a fixed probability
space (Ω,F, P), and that all random variables in question are defined on it. Let us
recall that Ω is an arbitrary non-empty set, F is a σ-field of subsets of Ω, probability
P is a normalised measure on F which means that

(i) P : F→ [0, 1],
(ii) P(∅) = 0, P(Ω) = 1,

(iii) for arbitrary pairwise disjoint A1, A2, . . . ∈ F, we have

P
( ∞⋃

n=1

An

)
=

∞

∑
n=1

P(An).

The probability P has the properties:
1
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1. For every A ∈ F, P(A′) = 1− P(A).

2. For every A, B ∈ F, if A ⊂ B, then

P(A) 6 P(B) and P(B r A) = P(B)− P(A).

3. For every pairwise disjoint A1, . . . , Am ∈ F

P
( m⋃

k=1

Ak

)
=

m

∑
k=1

P(Ak) — finite additivity.

4. For every An ∈ F, n = 1, 2, . . . ,

P
( ∞⋃

n=1

An

)
6

∞

∑
n=1

P(An) — countable subadditivity.

5. For every A1, . . . , Am ∈ F

P
( m⋃

k=1

Ak

)
6

m

∑
k=1

P(Ak) — finite subadditivity.

6. (a) For every ascending sequence of events (An), An ⊂ An+1,

P
( ∞⋃

n=1

An

)
= lim

n→∞
P(An) — ‘continuity’ of probability,

(b) For every descending sequence of events (Bn), Bn+1 ⊂ Bn,

P
( ∞⋂

n=1

Bn

)
= lim

n→∞
P(Bn) — ‘continuity’ of probability.

In the theory of stochastic processes, we usually assume that the probability space
(Ω,F, P) is complete, i.e. that the σ-field F contains all subsets of the sets of prob-
ability zero. This assumption is not restrictive in any way since it can be proved
that every measure space can be completed (roughly speaking, this completion
consists in adding to F all subsets of sets of measure zero).

Note the following consequence of the properties of probability.

Lemma 1. Let An ∈ F, n = 1, 2, . . . , be such that P(An) = 1. Then

P
( ∞⋂

n=1

An

)
= 1.

Proof. For the complementary event, we have

0 6 P
(( ∞⋂

n=1

An
)′)

= P
( ∞⋃

n=1

A′n
)
6

∞

∑
n=1

P(A′n) = 0,

hence

P
(( ∞⋂

n=1

An
)′)

= 0,

i.e.

P
( ∞⋂

n=1

An

)
= 1,

which proves the lemma. �
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Let us recall two basic modes of convergence considered in probability theory:
convergence with probability one and convergence in probability — for simplicity
we restrict attention to sequences.

Definition. A sequence of random variables (Xn) is said to converge with probability
one to a random variable X, if the set {ω : lim

n→∞
Xn(ω) = X(ω)} is an event and has

probability one (in other words, for almost all ω ∈ Ω, we have Xn(ω) −→
n→∞

X(ω)).

Definition. A sequence of random variables (Xn) is said to converge in probability
to a random variable X, if for any ε > 0

P(|Xn − X| > ε) −→
n→∞

0, equivalently P(|Xn − X| < ε) −→
n→∞

1.

A relation between these modes of convergence is as follows.

Theorem 1. If a sequence of random variables (Xn) converges to a random variable X
with probability one, then it converges to X in probability.

Proof. The proof hinges on the following representation which, in turn, is a conse-
quence of the very definition of limit.

{ω : lim
n→∞

Xn(ω) = X(ω)} =
∞⋂

k=1

∞⋃
m=1

∞⋂
n=m

{
ω : |Xn(ω)− X(ω)| < 1

k

}
.

(
For each ω belonging to the right-hand side we have that for every k ∈ N there

is m ∈ N such that for every n > m the inequality |Xn(ω) − X(ω)| < 1
k holds,

which is an ‘ε-definition’ of the relation lim
n→∞

Xn(ω) = X(ω) with ε = 1
k
)
. Denote

the set on the left-hand side of the equality above by A:

A = {ω : lim
n→∞

Xn(ω) = X(ω)}.

From the assumption, we have P(A) = 1, hence

P
( ∞⋂

k=1

∞⋃
m=1

∞⋂
n=m

{
ω : |Xn(ω)− X(ω)| < 1

k

})
= 1,

which means that for any k ∈N, we have

P
( ∞⋃

m=1

∞⋂
n=m

{
ω : |Xn(ω)− X(ω)| < 1

k

})
= 1.

Set

Am =
∞⋂

n=m

{
ω : |Xn(ω)− X(ω)| < 1

k

}
.

The sequence of events (Am : m = 1, 2 . . . ) is ascending, and we have

P
( ∞⋃

m=1

Am

)
= 1,

consequently, the ‘continuity’ of probability yields

lim
m→∞

P(Am) = P
( ∞⋃

m=1

Am

)
= 1.
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Since obviously
∞⋂

n=m

{
ω : |Xn(ω)− X(ω)| < 1

k

}
⊂
{

ω : |Xm(ω)− X(ω)| < 1
k

}
,

we obtain

P
({

ω : |Xm(ω)− X(ω)| < 1
k

})
−→

m→∞
1

for every k ∈N, which shows the convergence in probability of the sequence (Xm)
to X. �

Remark. The above theorem can not be reversed, i.e. convergence in probability
does not imply convergence with probability one, still the following theorem holds
true.

Theorem 2. If a sequence of random variables (Xn) converges in probability to a random
variable X, then there is a subsequence (Xkn) converging to X with probability one.

Before proving this, recall known from elementary probability theory:

Borel-Cantelli Lemma. Let (An) be a sequence of events such that
∞

∑
n=1

P(An) < ∞.

Then

P
( ∞⋂

m=1

∞⋃
n=m

An
)
= 0.

Proof. Put

Bm =
∞⋃

n=m
An.

(Bm) is a descending sequence of events, thus the ‘continuity’ and countable sub-
additivity of probability yield

P
( ∞⋂

m=1

∞⋃
n=m

An
)
= P

( ∞⋂
m=1

Bm
)
= lim

m→∞
P(Bm)

= lim
m→∞

P
( ∞⋃

n=m
An
)
6 lim

m→∞

∞

∑
n=m

P(An) = 0,

since on the right-hand side we have a reminder of a convergent series. �

Proof of Theorem. Let n be fixed. Since

lim
m→∞

P
(
|Xm − X| > 1

n

)
= 0,

there exists kn such that

P
(
|Xkn − X| > 1

n

)
<

1
2n ,

and certainly we may assume that (kn) is an increasing sequence. Let

An =
{

ω : |Xkn(ω)− X(ω)| > 1
n

}
.
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The Borel-Cantelli Lemma yields

P
( ∞⋂

m=1

∞⋃
n=m

An
)
= 0,

thus

1 = P
(( ∞⋂

m=1

∞⋃
n=m

An
)′)

= P
( ∞⋃

m=1

∞⋂
n=m

A′n
)

= P
( ∞⋃

m=1

∞⋂
n=m

{
ω : |Xkn(ω)− X(ω)| < 1

n

})
.

Put

A =
∞⋃

m=1

∞⋂
n=m

{
ω : |Xkn(ω)− X(ω)| < 1

n

}
.

Then P(A) = 1, and for ω ∈ A there exists m ∈ N such that for all n > m the
inequality

|Xkn(ω)− X(ω)| < 1
n

holds, so Xkn(ω) −→
n→∞

X(ω), hence Xkn −→n→∞
X with probability one. �

In the problem that follows, we show that in some specific situations conver-
gence in probability is equivalent to convergence with probability one.

Problem 1. Let Ω = {ω1, ω2, . . . } be a discrete space, let F = 2Ω, and let
P({ωi}) > 0, ∑

i
P({ωi}) = 1. Assume that a sequence (Xn) of random variables

on Ω converges in probability to a random variable X. Then Xn −→n→∞
X with

probability one.

Solution. We shall (and must) show that Xn(ωi) −→n→∞
X(ωi) for each i. To the

contrary, assume that Xn(ωi0) 9 X(ωi0) for some i0. Then there is ε0 > 0 and a
subsequence (kn) such that

|Xkn(ωi0)− X(ωi0)| > ε0 for all n.

The subsequence (Xkn) also converges in probability to X, and putting

An = {ω : |Xkn(ω)− X(ω)| < ε0},

we have P(An)→ 1 and ωi0 /∈ An for every n, thus

An ⊂ Ω r {ωi0}.

Hence we get
P(An) 6 P(Ω r {ωi0}) = 1− P({ωi0}),

and passing to the limit

1 = lim
n→∞

P(An) 6 1− P({ωi0}) < 1,

a contradiction.
Next two problems deal with the above modes of convergence.
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Problem 2. Assume that for a sequence of random variables (Xn) and a random

variable X we have
∞

∑
n=1

P(|Xn − X| > εn) < ∞ for εn → 0. Show that Xn → X

with probability one.

Solution. From the Borel-Cantelli Lemma we get

P
( ∞⋂

m=1

∞⋃
n=m
{ω : |Xn(ω)− X(ω)| > εn}

)
= 0,

i.e.

P
( ∞⋃

m=1

∞⋂
n=m
{ω : |Xn(ω)− X(ω)| < εn}

)
= 1.

For

ω ∈
∞⋃

m=1

∞⋂
n=m
{ω : |Xn(ω)− X(ω)| < εn})

we have that there is m ∈N such that for all n > m the following inequality holds

|Xn(ω)− X(ω)| < εn,

which means that Xn(ω)→ X(ω), hence Xn → X with probability one.

Problem 3. Let for random variables X i Y

d(X, Y) =
∫
Ω

|X−Y|
1 + |X−Y| dP.

Show that for a sequence (Xn) of random variables and a random variable X,
Xn → X in probability if and only if d(Xn, X)→ 0.

Solution. Let Z be an arbitrary non-negative random variable, and let ε > 0 be
arbitrary. The following estimate holds true

(1)

∫
Ω

Z
1 + Z

dP =
∫

{Z<ε}

Z
1 + Z

dP +
∫

{Z>ε}

Z
1 + Z

dP

6
∫

{Z<ε}

Z dP +
∫

{Z>ε}

1 dP 6
∫

{Z<ε}

ε dP + P(Z > ε)

=εP(Z < ε) + P(Z > ε) 6 ε + P(Z > ε).

Consider the function

f (t) =
t

1 + t
, t ∈ [ε, ∞).

This function is increasing, thus it takes its minimum in the smallest point of the
domain which leads to the inequality

t
1 + t

>
ε

1 + ε
for t > ε.
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The above yields

(2)

∫
Ω

Z
1 + Z

dP =
∫

{Z<ε}

Z
1 + Z

dP +
∫

{Z>ε}

Z
1 + Z

dP

>
∫

{Z>ε}

Z
1 + Z

dP >
∫

{Z>ε}

ε

1 + ε
dP =

ε

1 + ε
P(Z > ε)

Assume that Xn → X in probability. From the inequality (1), we obtain, putting
Z = |Xn − X|,

d(Xn, X) 6 ε + P(|Xn − X| > ε)

and taking n0 such that for n > n0 we have P(|Xn − X| > ε) < ε, we get

d(Xn, X) 6 ε + P(|Xn − X| > ε) < 2ε for n > n0,

which proves that d(Xn, X)→ 0.
Now let d(Xn, X) → 0. From the inequality (2), we obtain that for arbitrary

ε > 0
ε

1 + ε
P(|Xn − X| > ε)→ 0,

thus P(|Xn − X| > ε) → 0 for arbitrary ε > 0, which proves that Xn → X in
probability.

Let X : Ω → R be a random variable. Its distribution µX is defined as a proba-
bility measure on (R,B(R)) by the formula

µX(B) = P(X−1(B)), B ∈ B(R).

Accordingly, if (X1, . . . , Xk) is a random vector, its distribution (≡ joint distribution)
µX1,...,Xk is defined as a probability measure on (Rk,B(Rk)) by the formula

µX1,...,Xk (B) = P((X1, . . . , Xk)
−1(B))

= P({ω : (X1(ω), . . . , Xk(ω)) ∈ B}), B ∈ B(Rk).

In the first equality above, (X1, . . . , Xk) is treated as a map (X1, . . . , Xk) : Ω → Rk

defined as
(X1, . . . , Xk)(ω) = (X1(ω), . . . , Xk(ω))

Observe that having µX1,...,Xk we can find the distributions of each random variable
Xi, i = 1, . . . , k (≡ marginal distributions), by the formula

µXi (B) = µX1,...,Xk (R× · · · × B
i
× · · · ×R), B ∈ B(R).

The inverse procedure is, in general, impossible, i.e. the knowledge of all marginal
distributions µXi , i = 1, . . . , k, does not imply the knowledge of the joint distribu-
tion µX1,...,Xk . However, if the random variables are independent then we do have
the formula

(3) µX1,...,Xk = µX1 ⊗ · · · ⊗ µXk ,

meaning that in this case the joint distribution is a product of the marginal distri-
butions. (As a matter of fact, the formula (3) is equivalent to the independence of
the random variables X1, . . . , Xk.)
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Let X and Y be random variables, and let g : R2 → R be a Borel function. Put
Z(ω) = g(X(ω), Y(ω)). Z is a random variable. For its distribution function FZ
we have

FZ(t) = P({ω : Z(ω) 6 t}) = P({ω : g(X(ω), Y(ω)) 6 t}).
Denote

B = {(x, y) : g(x, y) 6 t}.
Then for the map (X, Y) : Ω→ R2 defined as

(X, Y)(ω) = (X(ω), Y(ω))

we have

(X, Y)−1(B) = {ω : (X(ω), Y(ω)) ∈ B} = {ω : g(X(ω), Y(ω)) 6 t}.
Hence

FZ(x) = P({ω : g(X(ω), Y(ω)) 6 t}) = P((X, Y)−1(B))

= µX,Y(B) = µX,Y({(x, y) : g(x, y) 6 t}),
thus knowledge of the joint distribution µX,Y allows us to find the distribution of
a function of the random variables X and Y.

Problem 4. Alice and Bob agree to have an appointment at a cafe between 17 and
18. The moments of their arrivals to the cafe are independent random variables
with uniform distributions on the interval [0, 1], where 0 stands for the hour 17
and 1 for the hour 18. It is agreed that each one waits 15 minutes (= 1

4 ) for the
other. Find the probability that they will meet.

Solution. Let X be the moment of arrival of Alice, and Y — the moment of arrival
of Bob. The density functions of X and Y are the same and equal

fX(x) = fY(x) =

{
1, if 0 < x < 1
0, otherwise

Since X and Y are independent, the density fX,Y of the random vector (X, Y)
equals a product of the densities fX and fY (more precisely, fX,Y(x, y) = fX(x) fY(y)),
thus

fX,Y(x, y) =

{
1, for 0 < x < 1, 0 < y < 1
0, otherwise

.

The probability that they meet equals P
(
|X−Y| < 1

4

)
, hence

P
(
|X−Y| < 1

4

)
=

∫∫
{(x,y)∈[0,1]×[0,1]:|x−y|< 1

4 }

fX,Y(x, y) dxdy

=
∫∫

{(x,y)∈[0,1]×[0,1]:|x−y|< 1
4 }

dxdy

=Area
({

(x, y) ∈ [0, 1]× [0, 1] : |x− y| < 1
4

})
=

7
16

.

The lemma that follows gives an important tool for proving measurability in most
cases.
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Lemma 2. Let E be an arbitrary space with a σ-field M of its subsets, let F be a space with
a σ-field N of its subsets, and let A ⊂ N be such that the σ-field generated by A equals N,
σ(A) = N. Let f : E → F be a map such that for every A ∈ A we have f−1(A) ∈ M.
Then for every B ∈ N we have f−1(B) ∈M (in other words: f is measurable).

Proof. Let
C = {C ⊂ F : f−1(C) ∈M}.

We shall first prove that C is a σ-field. Indeed, f−1(∅) = ∅ ∈ M, showing that
∅ ∈ C, and f−1(F) = E ∈M, showing that F ∈ C.

For C ∈ C, we have f−1(C′) = f−1(C)′ ∈ M, since f−1(C) ∈ M, showing that
C′ ∈ C.

For Cn ∈ C, we have

f−1
( ∞⋃

n=1

Cn

)
=

∞⋃
n=1

f−1(Cn) ∈M,

since f−1(Cn) ∈M, showing that
∞⋃

n=1
Cn ∈ C.

By assumption, we have A ⊂ C, thus N = σ(A) ⊂ C (because C is a σ-field
containing A and N = σ(A) is the smallest σ-field containing A). Consequently, for
every B ∈ N, we have B ∈ C which means that f−1(B) ∈M. �

Observe that this lemma is exploited in the definition of a random variable as
a measurable function X : Ω → R. Four equivalent definitions of measurability are
as follows:

(i) for each a ∈ R, {ω : X(ω) < a} = X−1((−∞, a)) ∈ F,
(ii) for each a ∈ R, {ω : X(ω) 6 a} = X−1((−∞, a]) ∈ F,

(iii) for each a ∈ R, {ω : X(ω) > a} = X−1((a, ∞)) ∈ F,
(iv) for each a ∈ R, {ω : X(ω) > a} = X−1([a, ∞)) ∈ F.

However, there is a fifth equivalent (though more general) definition

(v) for each B ∈ B(R), {ω : X(ω) ∈ B} = X−1(B) ∈ F

The equivalence of all definitions follows from the lemma. Namely, we have

σ({(−∞, a) : a ∈ R}) = σ({(−∞, a] : a ∈ R})
=σ({(a, ∞) : a ∈ R}) = σ({[a, ∞) : a ∈ R}) = B(R).

For a random variable X, we define its expectation as

EX def
=
∫

Ω
X dP basic formula

=
∫

R
x µX(dx)

if X is integrable, i.e.
∫

Ω |X| dP < +∞.
It follows that the expectation satisfies the conditions (as an integral)

(1) If a random variable X is constant with probability one, P(X = c) = 1 for
some c ∈ R, then EX = c,

(2) for each a ∈ R, E(aX) = aEX,
(3) for random variables X, Y, E(X + Y) = EX + EY,
(4) for random variables X, Y such that X 6 Y with probability one, EX 6 EY,

under the assumption that all expectations above exist.
Recall now the fundamental Schwarz inequality.
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Schwarz inequality. Let X and Y be random variables with finite second moments,
EX2 < ∞, EY2 < ∞. Then

(4) |EXY| 6
(
EX2)1/2(

EY2)1/2.

Proof. Consider the function

f (t) = E(tX−Y)2, t ∈ R.

This function is non-negative as the expectation of a non-negative random vari-
able, and we have

f (t) = (EX2)t2 − 2(EXY)t + EY2.

Note that from the inequality

2|XY| 6 X2 + Y2

it follows that the function |XY| is integrable since it is non-negative and bounded
from above by a sum of two integrable functions thus there exists a finite E|XY|
and because |EXY| 6 E|XY|, there exists a finite EXY, which means that the
function f takes finite values. Assume that EX2 6= 0. Then f is a non-negative
quadratic function having a positive coefficient at t2, so we must have

0 > ∆ =
(
− 2(EXY)

)2 − 4EX2EY2,

hence
EX2EY2 >

(
EXY

)2,

and the inequality (4) follows.
If EX2 = 0, then X = 0 (with probability one) and we have zero on both sides

of the inequality (4). �

For a random variable X such that EX exists, we define its variance as

D2X def
= E(X−EX)2 useful formula

= EX2 − (EX)2

It follows that the variance satisfies the conditions:
(1) D2X > 0; moreover, D2X = 0 if and only if X is constant with probability

one, P(X = c) = 1 for some c ∈ R,
(2) for each a ∈ R, D2(aX) = a2D2X,
(3) for random variables X, Y,

D2(X + Y) = D2X + D2Y + 2(EXY−EXEY),

under the assumption that all variances above exist.
Random variables X and Y are said to be uncorrelated if

EXY = EXEY,

thus
D2(X + Y) = D2X + D2Y

if and only if X and Y are uncorrelated.
It is proven that if X and Y are independent, then they are uncorrelated (of

course, under the assumption that EX and EY exist). Hence, for independent
random variables, variance of their sum equals a sum of their variances.
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Chebyshev inequality (1. variant). Let Z be a non-negative random variable. Then
for arbitrary ε > 0 we have

P(Z > ε) 6
EZ

ε
.

Proof. Of course, we may assume that EZ < ∞. By virtue of the non-negativity of
Z, we have

EZ =
∫

Ω
Z dP >

∫
{Z>ε}

Z dP >
∫

{Z>ε}

ε dP = εP(Z > ε)

and dividing both sides by ε, we obtain the conclusion. �

Chebyshew inequality (2. variant). Let X be a random variable with finite expectation.
Then for arbitrary ε > 0 we have

P(|X−EX| > ε) 6
D2X

ε2 .

Proof. Again, we may assume that the variance of the random variable X is finite.
Then we have for Z = (X−EX)2 and ε2 instead of ε

P(|X−EX| > ε) = P((X−EX)2 > ε2)

6
E(X−EX)2

ε2 =
D2X

ε2 .

�

3. PROBLEMS TO SOLVE

Problem 5. The times of arrival of buses A and B are independent random vari-
ables having exponential distributions with parameters α and β, respectively. Find
the distribution of the time of arrival of the first bus.

Problem 6. The setting is the same as in Problem 4 (Alice meets Bob) with the
only difference that Alice does not wait, i.e. she comes to the cafe and if Bob is not
present she leaves. Find the probability that they will meet.

Problem 7. The random vector (X, Y) has density

f (x, y) =

{
1, for 0 < x < 1, 0 < y < 1
0, otherwise

.

Find the distribution of the random variable Z = X + Y.

Problem 8. Let Xn be random variables with the distribution functions

Fn(x) =


0, for x < 0
nx, for 0 6 x < 1

n
1, for x > 1

n

.

Prove that Xn → 0 in probability.

Problem 9. Let Xn → X in probability, and Xn → X′ in probability. Show that
then P(X = X′) = 1.



12 ANDRZEJ ŁUCZAK

Hint. First prove that for random variables X and Y, and arbitrary ε > 0 the
following inequality holds

P(|X + Y| > ε) 6 P
(
|X| > ε

2

)
+ P

(
|Y| > ε

2

)
.

Problem 10. Let X and Y be random variables, and define

ρ(X, Y) = inf{ε > 0 : P(|X−Y| > ε) > ε}.
Show that Xn → X in probability if and only if ρ(Xn, X)→ 0.
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