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Chapter 1

Introduction to Diophantine
m-tuples

1.1 Definition

Definition 1.1. The set of m (distinct) non-zero integers {a1, a2, . . . , am} is called a Dio-
phantine m-tuples if

aiaj + 1 is a perfect square in Z,

for all 1 ≤ i < j ≤ m. (A perfect square is often denoted by □.)

The set is named after the ancient Greek mathematician Diophantus from the 3rd century
AD who found the set of four rational numbers{

1

16
,
33

16
,
17

4
,
105

16

}
(1.1)

with the property that the product of each two elements increased by 1 equals a perfect square
of some rational number. Indeed,

1

16
·
33

16
+ 1 =

(
17

16

)2

,
1

16
·
17

4
+ 1 =

(
9

8

)2

,
1

16
·
105

16
+ 1 =

(
19

16

)2

,

33

16
·
17

4
+ 1 =

(
25

8

)2

,
33

16
·
105

16
+ 1 =

(
61

16

)2

,
17

4
·
105

16
+ 1 =

(
43

8

)2

.

Let us note that Diophantinem-tuples can be observed in any commutative ring with unity.
If we observe them in the field of rational numbers Q, then they are called rational Diophantine
m-tuples. So, (1.1) is an example of a rational Diophantine quadruple.

The first Diophantine quadruple (in Z) was found by the French mathematician (and lawyer)
Pierre de Fermat (17th century):

{1, 3, 8, 120}. (1.2)

Indeed, we have

1 · 3 + 1 = 22, 1 · 8 + 1 = 32, 1 · 120 + 1 = 112, 3 · 8 + 1 = 52, 3 · 120 + 1 = 192, 8 · 120 + 1 = 312.

The set (1.1) is sometimes called Fermat’s quadruple.
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The problem that mathematicians are most concerned with is how large these sets can be.
This, of course, depends on the ring in which we observe these sets. In the ring of integers,
this problem is almost completely solved.

In this course we mainly talk about Diophantine m-tuples in the ring of integers. Note
that (integer) Diophantine m-tuples have either all positive or all negative elements, so we will
focus on those with positive elements, i.e. on m-tuples in the set of natural numbers. (The
only Diophantine m-tuple with mixed signs is the Diophantine pair {−1, 1}.)

1.2 On Diophantine pairs

There are infinitely many Diophantine pairs in N. Indeed, for any integer r > 1, consider the
pairs

(a, b) = (1, r2 − 1) or (a, b) = (r − 1, r + 1).

In both cases, we have
ab+ 1 = r2,

which shows that {a, b} is a Diophantine pair.
Moreover, for any a ∈ N, there are infinitely many b’s in N such that {a, b} is a Diophantine

pair. This is because a divides r2 − 1 for values of r satisfying

r − 1 = ka or r + 1 = ka,

where k is non-zero integer. Solving for b yields

b = k2a± 2k.

Thus, for any positive integers a and k , the pair

{a, k2a± 2k}

is a Diophantine pair.

1.3 On Diophantine triples

There are infinitely many Diophantine triples. For any integer k > 1, the set

{k − 1, k + 1, 4k}

forms a Diophantine triple, since:

(k − 1)(k + 1) + 1 = k2, 4k(k − 1) + 1 = (2k − 1)2, 4k(k + 1) + 1 = (2k + 1)2.

Now we may ask: given a Diophantine pair {a, b}, how many Diophantine triples {a, b, c}
can be formed by extending it? The answer is: infinitely many.

To see this, assume {a, b} is a Diophantine pair, so that ab + 1 = r2 for some integer r.
Then both sets

{a, b, a+ b+ 2r} and {a, b, a+ b− 2r}
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are Diophantine triples if a + b ± 2r ̸∈ {0, a, b}. Let’s verify that these extensions satisfy the
required conditions. Indeed,

a(a+ b+ 2r) + 1 = a2 + ab+ 2ar + 1 = a2 + r2 + 2ar = (a+ r)2

and similarly:

a(a+ b± 2r) + 1 = (a± r)2, b(a+ b± 2r) + 1 = (b± r)2.

This construction guarantees at least one valid extension, since

a+ b+ 2r > max{a, b} for r > 0.

It is possible that a+ b− 2r = 0 (for example for pairs {1, 3} and {2, 4}), but it is never equal
to a or b. So, it makes sense to assume that a < b < c and r > 0 (since {a, a+ b+ 2r} can be
extended by a+ (a+ b+ 2r)− 2(a+ r) = b). In this case the extension is c = a+ b+ 2r and
the Diophantine triple of the form

{a, b, a+ b+ 2r}

is called a regular Diophantine triple.
In what follows, we will see that there are infinitely many c’s that extend a given pair {a, b}.

Suppose we want to extend a Diophantine pair {a, b}, a < b, by an element c such that

ac+ 1 = s2, bc+ 1 = t2,

for some s, t > 0. By multiplying the first equation by b and the second by a and subtracting
them, we eliminate c and get Diophantine equation

at2 − bs2 = a− b.

Multiplying both sides by a, we get

(at)2 − abs2 = a(a− b). (1.3)

This equation is of the form
X2 −DY 2 = N, (1.4)

where D > 0 and D ̸= □, and is better known as Pellian or generalized Pell’s equation.
Pellian equation might not have solutions, but if it does, it has infinitely many solutions. Unlike
that, Pell’s equation

X2 −DY 2 = 1, (1.5)

always has infinitely many solutions (if D is a nonsquare positive integer).
If (X,Y ) ∈ N2 is a solution of (1.4) and (U, V ) ∈ N2 is a solution of the associated Pell’s

equation (1.5) then (X ′, Y ′) given by

X ′ +
√
DY ′ = (X +

√
DY )(U +

√
DV )

is a solution of (1.4). Indeed,

X ′2 −DY ′2 = (X ′ +
√
DY ′)(X ′ −

√
DY ′)

= (X +
√
DY )(U +

√
DV )(X −

√
DY )(U −

√
DV )

= (X2 −DY 2)(U2 −DV 2)

= N · 1 = N
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Since every Pell’s equation has infinitely many solutions in N, we conclude that (1.4) also has
infinitely many solutions in N (if it is solvable). Equation (1.3) has a solution that arises from
the regular expansion c = a+ b+ 2r. So, (T, s) = (a(b+ r), a+ r) is a solution of (1.3) (where
T := at). Another solution of (1.3) can be constructed in the following way:

(a(b+ r) +
√
ab(a+ r))(U +

√
abV ) = T ′ +

√
abs′,

where (U, V ) is a solution of the related Pell’s equation X2 − abY 2 = 1. We get

s′ = (a+ r)U + a(b+ r)V.

Note that
s′2 − 1 ≡ 0 (mod a).

Indeed,
s′2 − 1 ≡ r2U2 − 1 = (ab+ 1)U2 − 1 ≡ U2 − 1 (mod a)

and U2 − 1 = abV 2 ≡ 0 (mod a). Therefore, the following is well defined

c′ :=
s′2 − 1

a
=

((a+ r)U + a(b+ r)V )2 − 1

a

and {a, b, c′} is a Diophantine triple.

Solutions to Pellian equations can be described using recurrence sequences. More precisely,
the solutions to a Pellian equation in one variable can be generated by a second-order linear
recurrence. This will be discussed in one of the following chapters.

1.4 On Diophantine quadruples

There exist infinitely many Diophantine quadruples. Here are some examples of families of
Diophantine quadruples:

{k, k + 2, 4k + 4, 4(k + 1)(2k + 1)(2k + 3)}, k ≥ 1

{F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3}, n ≥ 0.

Previous sets are taken to be generalizations of Fermat’s quadruple {1, 3, 8, 120}. More general,
if the sequence (gn) be defined as:

g0 = 0, g1 = 1, gn = pgn−1 − gn−2, n ≥ 2,

where p ≥ 2 is an integer, then the set

{gn, gn+2, (p± 2)gn+1, 4gn+1((p± 2)g2n+1 ∓ 1)}

had the property of Diophantus. For p = 2, 3 we get the previous sets.

More examples with with Pell numbers Pn and Pell-Lucas numbers Q′
n = 2Qn:

{P2n, P2n+2, 2P2n, 4Q2nP2n+1Q2n+1},

{P2n, P2n+2, 2P2n+2, 4P2n+1Q2n+1Q2n+2}
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(These numbers are defined by

P0 = 0, P1 = 1, Pn+2 = 2Pn+1 + Pn, n ≥ 0,

Q0 = 1, Q1 = 1, Qn+2 = 2Qn+1 +Qn, n ≥ 0.)

What can we say about the extensions of a Diophantine pair or triple to a Diophantine
quadruple? The following propositions show that this is always possible.

Proposition 1.2 (Euler,18th century). If {a, b} is a Diophantine pair, then

{a, b, a+ b+ 2r, 4r(a+ r)(b+ r)}

is a Diophantine quadruple, where ab+ 1 = r2.

Proposition 1.3 (Arkin, Hogatt and Strauss, 1979). If {a, b, c} is a Diophantine triple, then

{a, b, c, a+ b+ c+ 2abc+ 2rst} (1.6)

is a Diophantine quadruple, where ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2.

A Diophantine quadruple of the form (1.6), where a < b < c, is called regular. It can be
shown that {a, b, c, d} is a regular Diophantine quadruple if and only if

(a+ b− c− d)2 = 4(ab+ 1)(cd+ 1).

The problem of extending the Diophantine triple {a, b, c} to a Diophantine quadruple
{a, b, c, d} is equivalent to determining an integer triple (x, y, z) such that

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2.

By eliminating d, the previous equations reduce to a system of Diophantine equations:

ay2 − bx2 = a− b, (1.7)

az2 − cx2 = a− c, (1.8)

i.e. to a system of Pellian equations:

(ay)2 − (ab)x2 = a(a− b), (1.9)

(az)2 − (ac)x2 = a(a− c), (1.10)

Systems of the form (6.19) and (6.23), or (1.9) and (1.10), are not easy to solve. For some
specific values of the elements a, b and c, we will show how they can be treated by applying
Baker’s theory on linear forms in logarithms of algebraic numbers. A linear form in logarithms
of algebraic numbers is an expression of the form

Λ = b1 logα1 + · · ·+ bn logαn,

where b1, . . . , bn are rational numbers and α1, . . . , αn are algebraic numbers. Also, we will need
so called Baker-Davenport’s reduction base on the expansion into a continued fraction.

How is the problem of finding solutions to the system (1.9), (1.10) related to Baker’s theory
on linear forms in logarithms?
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Each of these equations has solutions that can be described by binary (second-order) recur-
rence sequences. So, solving the system means finding the intersection of two such sequences.
This leads to the problem of finding positive integers m and n such that:

γαm ≈ δβn

for certain algebraic numbers α, β, γ, δ.Taking logarithms of both sides, we get

m logα− n log β + log
γ

δ
≈ 0.

Now, Baker’s theory tells us that a nonzero linear combination of logarithms of algebraic
numbers cannot be too close to zero. In fact, Baker’s result gives an explicit lower bound on
how far from zero such an expression must be—unless it is exactly zero. As a result, we can
obtain an explicit upper bound for the possible values of m and n. However, this bound is
usually too large to check directly, so we apply a refinement method developed by Baker and
Davenport to reduce the search range.

Another way to obtain an upper bound on the solutions is by using results on the si-
multaneous approximation of square roots — this is known as the hypergeometric method in
Diophantine approximation. Specifically, if we assume that the system (6.19),(6.23) has some
relatively large solution x, y, z, then y/x and z/x provide very good rational approximations
(with a common denominator) to the irrational numbers

√
a/c and

√
b/c, respecively.

Conjecture 1.4. If {a, b, c, d} is a Diophantine quadruple and d > max{a, b, c}, then

d = a+ b+ c+ 2abc+ 2rst.

Conjecture (1.4) implies that all quadruples are regular and thta there is no Diophantine
quintuple.

1.5 On Diophantine quintuples

For many years, mathematicians have studied the well-known Diophantine quintuple conjecture,
which asserts that no Diophantine quintuple exists. The first significant step toward resolving
this conjecture was made in 1969 by Baker and Davenport [3], who showed that Fermat’s
quadruple {1, 3, 8, 120} cannot be extended to a Diophantine quintuple. Using Baker’s theory
of linear forms in logarithms of algebraic numbers, along with a reduction method based on
continued fractions, they proved that if d is a positive integer such that {1, 3, 8, d} forms a
Diophantine quadruple, then d = 120. This implies that the triple {1, 3, 8} cannot be extended
to a quintuple. Similar results have been established for many families of Diophantine pairs
and triples.

Euler was able to extend Fermat’s quadruple to the rational quintuple

{1, 3, 8, 120, 777480

8288641
}.

Dujella ([12]) generalized Euler’s construction and extended an arbitrary Diophantine quadru-
ple {a, b, c, d} to a (rational) Diophantine quintuple:

{a, b, c, d, e = (a+ b+ c+ d)(abcd+ 1) + 2abc+ 2abd+ 2acd+ 2bcd± 2r1r2r3r4r5r6
(abcd− 1)2

}

8
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where ab+ 1 = r21, ac+ 1 = r22, ad+ 1 = r23, bc+ 1 = r24, bd+ 1 = r25, cd+ 1 = r26.
In 2004 Dujella ([15]) made an important breakthrough showing that a Diophantine sextuple

does not exist and that there are only finitely many Diophantine quintuples. The bound for the
number of possible Diophantine quintuples has been improved by several authors and finally
in 2019, He, Togbé and Ziegler ([22]) published the proof of Diophantine quintuple conjecture.

Theorem 1.5. There does not exist a Diophantine quintuple.

1.6 D(n)-tuples

There are several generalizations of classical Diophantine quadruples. One natural generaliza-
tion is to replace the original condition - where the product of any two elements increased by 1
yields a perfect square - with the more general condition of adding an arbitrary element n ∈ R.
This leads to the broader concept of sets with the property D(n).

Definition 1.6. Let R be a commutative ring with unity, let m ∈ N, and let n ∈ R. A set
{a1, . . . , am} ⊆ R is said to have the property D(n) if for every pair of distinct elements in
the set, the expression aiaj + n is a perfect square in R.

A set with the property D(n) contained in R\{0} is called a Diophantine m-tuple with the
property D(n) in the ring R, or more briefly, a D(n)-m-tuple.

Interestingly, in certain integer rings of number fields - such as the ring of rational integers,
the rings of integers of some quadratic fields, and specific cubic and quartic fields - the existence
of D(n)-quadruples is closely related to the representability of n as a difference of two squares.
More precisely, a D(n)-quadruple exists in such rings if and only if n = a2 − b2 for some
elements a, b in the ring (up to finitely many exceptions). However, recent results show that in
some rings of quadratic integers, there exist elements n that are not expressible as a difference
of two squares, yet a D(n)-quadruple still exists.

We will investigate D(n)-m-tuples in the ring of integers Z and briefly show the equivalence
between the existence of D(n)-quadruples and the representability of n as a difference of two
squares, up to finitely many exceptions. Note that if ab+ n = r2, then

{a, b, a+ b± 2r}

is a D(n)-triple - this can be verified in the same way as for the case n = 1. Furthermore, all
c’s such that a given Diophantine D(n)-pair {a, b} can be extended to a D(n)-triple {a, b, c}
are connected to the following Pell-type equation:

bx2 − ay2 = n(b− a).

Assignment 1. a) Show Proposition 1.3

b) If ab + 1 = r2, show that {a, b, a + b + 2r, 4r(a + r)(b + r)} is a regular Diophantine
quadruple.

c) Show that
{F2n, F2n+6, 4F2n+2, 4F2n+1F2n+3F2n+4}

is a D(4)-quadruple for n ∈ N. (Fn is the nth Fibonacci number.)
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Chapter 2

Simple continued fractions

2.1 Simple continued fraction expansion

Let α ∈ R and
a0 = ⌊α⌋ ∈ Z,

where ⌊α⌋ denote the floor of α, that is the greatest integer less than or equal to α.
If α ̸= a0, then 0 < α− a0 < 1 and

α1 =
1

α− a0
> 1.

So,

α = a0 +
1

α1
.

Now we put
a1 = ⌊α1⌋ ∈ N

and if α1 ̸= a1, then

α1 = a1 +
1

α2
,

where

α2 =
1

α1 − a1
> 1.

Hence,

α = a0 +
1

a1 +
1

α2

.

This procedure can be repeated as long as ak ̸= αk. Suppose that an = αn for some n ∈ N.
Then the procedure terminates and we get

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

. (2.1)
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We say that (2.1) is a finite simple continued fraction expansion of α (or finite simple continued
fraction representation). In what follows, we will omit the word ”simple”. In short, we write
it as

α = [a0; a1, a2, . . . , an]. (2.2)

Integers a0, a1, . . . , an are called the partial quotients (sometimes coefficients or terms) of the
continued fraction. Note that a1, . . . , an are positive integers. Also, if an ≥ 2 in (2.2), then
[a0, a1, . . . , an−1, an − 1, 1]. This means that we can have two continued fraction expansions of
α (in some cases).

It is important to point out that finite simple continued fractions correspond to rational
numbers and every rational number has a finite (simple) continued fraction expression. In that
case, that is if

α =
b

c
∈ Q,

coefficients of continued fraction can be computed by Euclid’s algorithm applied on b and c:

b = ca0 + r0, 0 < r0 < c,

c = r0a1 + r1, 0 < r1 < r0,

r0 = r1a2 + r2, 0 < r2 < r1,

...

rn−2 = rn−1an + rn, 0 < rn < rn−1,

rn−1 = rnan+1.

Example 1. Find continued fraction expansion of
173

119
using the Euclid’s Algorithm.

173 = 119 · 1 + 54 ⇒ 173

119
= 1 +

54

119
,

119 = 54 · 2 + 11 ⇒ 119

54
= 2 +

11

54
,

54 = 11 · 4 + 10 ⇒ 54

11
= 4 +

10

11
,

11 = 10 · 1 + 1 ⇒ 11

10
= 1 +

1

10
,

10 = 1 · 10 + 0 ⇒ 10

1
= 10.

So,
173

119
= [1; 2, 4, 1, 10].

On the other hand, the process for finding the simple continued fraction continues indefi-
nitely if and only if α is an irracional number. In this case

α = a0 +
1

a1 +
1

a2 +
1

. . . +
1

αn

= [a0; a1, a2, . . . , αn].
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and ak ̸= αk, for all k. So, we get an infinite simple continued fraction representation of α
which can be written as

α = a0 +
1

a1 +
1

a2 +
1

. . .

= [a0; a1, a2, . . .]. (2.3)

But what the right-hand object means? That is, in what sense do we have the equality in (2.3).
This will be argued in the following section.

2.2 Convergents

Let a0, a1, . . . , ak be coefficients of the continued fraction representation of α. The rational
number

pk
qk

= [a0; a1, . . . , ak] ,

is called the k-th convergent of the continued fraction. Here are the first few convergents:

p0
q0

= a0,
p1
q1

=
a0a1 + 1

a1
,
p2
q2

=
a0a1a2 + a0 + a2

a1a2 + 1
, . . .

Theorem 2.1 (Convergents’ properties ). Let

(
pn
qn

)
be convergents of α. Then following

properties hold:

(a)

pn = anpn−1 + pn−2, p−2 = 0, p−1 = 1, (2.4)

qn = anqn−1 + qn−2, q−2 = 1, q−1 = 0, n ≥ 0; (2.5)

(b) qnpn−1 − pnqn−1 = (−1)n,
n ≥ −1;

(c) gcd(pn, qn) = 1, n ≥ −2;

(d)

(
p2n
q2n

)
is an increasing sequence,

(
p2n+1

q2n+1

)
is a decreasing sequence;

(e)
p2n
q2n

<
p2m+1

q2m+1
, m, n ∈ N0;

(f)

lim
n→∞

pn
qn

= α; (2.6)

(g) ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q2n
, n ∈ N0. (2.7)
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Proofs of the above properties can be found in [?], 8.13 – 8.22.

Now we can argue that the equality in relation (2.3) makes sense due to the convergence of
(pn/qn).

The numerator and denominator of convergents satisfy two-term linear recursions (2.4) and
(2.5) that allow efficient calculations.

2.3 On approximation of irrationals by continued fractions

According to (2.7), the convergents are very good rational approximations to rationals.

Theorem 2.2. If
pn−1

qn−1
and

pn
qn

are two consecutive convergents of α, then at least one of them

satisfies ∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Proof. Since numbers α− pn
qn

and α− pn−1

qn−1
have the opposite signs, we have

∣∣∣∣α− pn
qn

∣∣∣∣+ ∣∣∣∣α− pn−1

qn−q

∣∣∣∣ = ∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ = 1

qnqn−1
<

1

2q2n
+

1

2q2n−1

Assuming that

∣∣∣∣α− pn
qn

∣∣∣∣ ≥ 1

2q2n
and

∣∣∣∣α− pn−1

qn−1

∣∣∣∣ ≥ 1

2q2n−1

, we get

1

qnqn−1
≥ 1

2q2n
+

1

2q2n−1

⇐⇒ (qn − qn−1)
2 ≤ 0,

a contradiction! Hence, ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

2q2n
or

∣∣∣∣α− pn−1

qn−1

∣∣∣∣ < 1

2q2n−1

.

The following theorem is a kind of reversal of the previous one. It will play a key role in
determining the fundamental solution to Pell’s equation.

Theorem 2.3 (Legendre). Let p and q be integers such that∣∣∣∣α− p

q

∣∣∣∣ < 1

2q2
.

Then
p

q
is a convergent of the continued fraction expansion of α.

Sketch of proof. If α =
p

q
, then the statement is trivially satisfied. So, assume that α ̸= p

q
and

α − p

q
=

εϑ

q2
, where 0 < ϑ <

1

2
and ε = ±1. Let

p

q
= [b0, b1, . . . , bn−1] be a continued fraction

13
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representation of
p

q
where n is such that (−1)n−1 = ε. (We can always achieve this because

[a0, a1, . . . , am] = [a0, a1, . . . , am − 1, 1].)
We now define ω as

ω =
pn−2 − αqn−2

αqn−1 − pn−1
.

Hence,

α =
ωpn−1 + pn−2

ωqn−1 + qn−2
,

ane
α = [b0, b1, . . . , bn−1, ω].

Due to the properties of convergents and the conveniently chosen n, it can be shown that ω > 1

and this means that [b0, b1, . . . , bn−1] =
p

q
is a convergent of the continued fraction expansion

of α.

2.4 Periodic continued fractions

A periodic continued fraction is an infinite continued fraction of the form

[a0, a1, . . . , ak−1, ak, ak+1, . . . , ak+m−1], (2.8)

where a vinculum (horizontal line) marks the repeating block. If (2.8) represents the continued
fraction of α, then

β = [ak, ak+1, . . . , ak+m−1]

is its purely periodic part. The length m of the minimal repeating block is called the period of
the continued fraction.

Theorem 2.4 (Euler, Lagrange). A continued fraction expansion of α is periodic if and only if
α is a quadratic irrational (i.e. α is an irrational solution to a quadratic equation with integer
coefficients).

Sketch of Proof. Suppose that α has a periodic continued fraction expansion:

α = [b0, b1, . . . , bk−1, a0, a1, . . . , am−1].

Define its purely periodic part as

β = [a0, a1, . . . , am−1] = [a0, a1, . . . , am−1, β].

From formulas (2.4) and (2.5), we obtain

β =
βpm−1 + pm−2

βqm−1 + qm−2

which implies that β satisfies a quadratic equation and is therefore a quadratic irrational.
Consequently, α is also a quadratic irrational.

To prove the converse, let α be a quadratic irrationality. Then there exist d, s0, t0 ∈ Z,
t0 ̸= 0, d ̸= □ such that

α =
s0 +

√
d

t0
and t0 | (d− s20).

14
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(If t0 ∤ (d−s20), then multiplying numerator and denominator by t0 yields t
2
0 | (dt20−(s0t0)

2)). To
compute the continued fraction expansion of α the following iterative algorithm (or recurrence)
is performed for a0 = ⌊α⌋ and i ≥ 0:

si+1 = aiti − si, ti+1 =
d− s2i+1

ti
, ai+1 =

⌊
si+1 +

√
d

ti+1

⌋
. (2.9)

It turns out that there exist j, k ∈ N, j < k, such that (sj , tj) = (sk, tk). Therefore, the
sequence becomes periodic and

α = [a0, . . . , aj−1, aj , aj+1, . . . , ak−1].

In particular, the continued fraction expansion of
√
d, d ̸= □, is a bit more specific. These

expansions are especially important due to their connection with Pell’s equation.

Theorem 2.5. Let d be a non-square positive integer. The continued fraction expansion of
√
d

is of the form √
d = [a0, a1, a2, . . . , ar−1, 2a0],

where a0 = ⌊
√
d⌋, and the remaining coefficients are computed by the recurrence:

si+1 = aiti − si, ti+1 =
d− s2i+1

ti
, ai+1 =

⌊
si+1 + a0

ti+1

⌋
, i = 0, . . . , r − 1, (2.10)

with the initial terms s0 = 0, t0 = 1.
Moreover, the sequence a1, a2, . . . , ar−1 forms a palindromic string:

a1 = ar−1, a2 = ar−2, . . .

Proof. See Theorem 8.41 in [?].

Remark 2.6. Since the period of the continued fraction for
√
d is not known in advance, we

continue applying the recurrence (2.10) until the pair (s1, t1) repeats. If the period is r, we will
have (s1, t1) = (sr+1, tr+1) which signals that the process can stop.

15



Chapter 3

Pell’s equation

3.1 Existence of solutions to Pell’s equation

Definition 3.1. Let d be a positive integer that is not a perfect square. Diophantine equation
of the form

x2 − dy2 = 1 (3.1)

is called Pell’s equation.
Pellian equation or generalized Pell’s equation is of the form

x2 − dy2 = N, (3.2)

where N is an integer.

Equation (3.1) is named after the English 17th-century mathematician John Pell, who did
not significantly contribute to its solution. Credit was incorrectly attributed to him by Euler.
However, the equation had been of interest to mathematicians much earlier. Thus, the equation
x2 − 2y2 = 1 appears among ancient Greek mathematicians (6th century BC) in connection
with their research into the nature of the number

√
2. Furthermore, it was also studied by the

Indian 7th-century mathematicians Brahmagupta and Bhaskara, who found solutions for some
special values of the number d, specifically d = 11, 31, 61, 67. These values are not chosen at
random, but are such that the smallest solution in the set of natural numbers is unexpectedly
large. Thus, the smallest solution to the equation x2 − 61y2 = 1 is equal to x = 1776319049,
y = 22615390. Five centuries later, Bhaskara II perfected the method for solving the Pell
equations of his predecessors and called this method the caravala (cyclic procedure). What
he did not prove was whether the method was effective for each d. The first Europeans to
participate significantly in the study were Fermat, Frenicle de Bessy, Brouncker and Wallis in
the mid-17th century, but the greatest credit goes to Lagrange (18th century) who would offer
a completely new approach based on continued fractions.

Pell’s equation (3.1) has infinitely many solutions in the set of positive integers, in contrast
to (3.2) which is not necessarily solvable. (For example, X2 − 5y2 = 2 has no solution.)

Theorem 3.2. There is at least one pair of positive integers (x, y) that satisfies Pell’s equation
(3.1).

Theorem 3.2 was stated (without proof) by Fermat. The proof is based on the following
consequence of Dirichlet’s theorem (see, for example, Theorem 6.1. in [?]) which we state
without proof, but it also follows directly from the proposition 2.1(g)).

16
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Lemma 3.3. If α is an irrational number, then there are infinitely many relatively prime
integers p and q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
. (3.3)

Corollary 3.4. Let d be a positive integer that is not a perfect square. There are infinitely
many pairs of positive integers (x, y) such that

|x2 − dy2| < 1 + 2
√
d. (3.4)

Proof. Since
√
d is an irrational number, Lemma 3.3 implies that there exist infinitely many

pairs of positive integers (x, y) such that∣∣∣∣xy −
√
d

∣∣∣∣ < 1

y2
.

Also, ∣∣∣∣xy +
√
d

∣∣∣∣ = ∣∣∣∣xy −
√
d+ 2

√
d

∣∣∣∣ < 1

y2
+ 2

√
d.

Hence,
|x2 − dy2| = |(x− y

√
d)(x+ y

√
d)| < 1 + 2

√
d.

Proof of Theorema 3.2. According to Corollary 3.4 there exists an non-zero integer k ̸= 0 such
that x2 − dy2 = k is valid for infinitely many pairs of positive integers (x, y). Since there
are infinitely many of such pairs, there exist at least two pairs (x1, y1) and (x2, y2) such that
|x1| ≠ |x2| and

x1 ≡ x2 (mod |k|), y1 ≡ y2 (mod |k|). (3.5)

We have
(x1 − y1

√
d)(x2 + y2

√
d) = x1x2 − y1y2d+ (x1y2 − x2y1)

√
d.

According to (3.5) and x21 − dy21 = x22 − dy22 = k, the following congruences are valid

x1x2 − y1y2d ≡ x21 − y21d ≡ 0 (mod |k|), x1y2 − x2y1 ≡ x1y1 − x1y1 ≡ 0 (mod |k|).

Hence,
x1x2 − y1y2d = ku, x1y2 − x2y1 = kv,

for some integers u, v and

(x1 − y1
√
d)(x2 + y2

√
d) = k(u+ v

√
d),

(x1 + y1
√
d)(x2 − y2

√
d) = k(u− v

√
d).

Multiplying these two equations gives

k2 = (x21 − dy21)(x
2
2 − dy22) = k2(u2 − dv2)

which means that u2 − dv2 = 1.
To complete the proof, we have to see that v ̸= 0. Let us assume the opposite, v = 0. Then

x1y2 = x2y1, u = ±1 and

(x1 − y1
√
d)k = (x1 − y1

√
d)(x2 + y2

√
d)(x2 − y2

√
d) = ±k(x2 − y2

√
d).

So, x1 = ±x2 and y1 = ±y2. This is a contradiction with |x1| ≠ |x2|. Hence, v ̸= 0 and (|u|, |v|)
is a positive integer solution of Pell’s equation.
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We formally denote the solution of Pell’s equation (3.1) by

u+ v
√
d,

that is as an element of the quadratic field Q(
√
d). Among other things, such a notation has

some technical advantages. If u+ v
√
d < u′ + v′

√
d (in the numerical sense), then the solution

u + v
√
d is less the solution u′ + v′

√
d. The smallest (or minimal) positive integer solution

of Pell’s equation is called fundamental solution and is usually denoted by x1 + y1
√
d. The

solution x0 + y0
√
d = 1 + 0

√
d is called trivial.

Example 2. If u+v
√
d and u′+v′

√
d are solutions of Pell’s equation (3.1), then (u+v

√
d)(u′+

v′
√
d) is also a solution of (3.1).
If a+ b

√
d is a solution of Pellian equation x2 − dy2 = −1, then (a+ b

√
d)2 is a solution of

Pell’s equation (3.1).

Basic facts on quadratic fields
Let us assume that d is a square-free integer. The set

Q(
√
d) = {a+ b

√
d : a, b ∈ Q}

a field under operations under standard addition and multiplication, called quadratic field. In
other words, it is an algebraic number field of degree two over Q. Elements of Q(

√
d) are roots

of unique monic polynomials with rational coefficients of degree one or two. If the element
α ∈ Q(

√
d) is a root of a monic polynomial with integer coefficients, then α is an algebraic

integer. The set of all algebraic integers in any number field, K, forms a ring that is frequently
denoted as OK. For K = Q(

√
d) a ring of integers depends on d:

OQ(
√
d) =


Z[
√
d] = {a+ b

√
d : a, b ∈ Z}, d ≡ 2 or 3 (mod 4),

Z[1+
√
d

2 ] = {a+ b1+
√
d

2 : a, b ∈ Z},
= {u+v

√
d

2 : u, v ∈ Z, u ≡ v (mod 2)}, d ≡ 1 (mod 4).

The set of all invertible elements in OQ(
√
d) forms a (multiplicative) group called the group of

units or unit group.
The norm of the element α = a+ b

√
d is

N(α) = αα = (a+ b
√
d)(a− b

√
d) = a2 − db2.

The norm satisfies the following properties:

� N(αβ) = N(α)N(β), for all α, β ∈ Q(
√
d),

� N(α) = 0 if and only if α = 0,

� α ∈ OQ(
√
d) ⇒ N(α) ∈ Z,

� α ∈ OQ(
√
d) is a unit if and only if N(α) ∈ {−1, 1}.

The last property establishes a connection between the units of OQ(
√
d) and Pell’s equation, or

Pellian equations. So, if d ≡ 2 or 3 (mod 4), α = a+ b
√
d is a unit if and only if it is a solution

to one of equations x2 − dy2 = ±1. If d ≡ 1 (mod 4), α = a+ b
√
d is a unit if and only if it is

a solution to one of equations x2 − dy2 = ±4.
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3.2 Structure of the solution set of Pell’s equation

Theorem 3.5. Let x1+y1
√
d be a fundamental solution to Pell’s equation (3.1). All solutions

in positive integers are given by

xn + yn
√
d = (x1 + y1

√
d)n. (3.6)

Furthermore.

xn =

⌊n/2⌋∑
k=0

(
n

2k

)
xn−2k
1 y2k1 dk,

yn =

⌊n/2⌋∑
k=0

(
n

2k + 1

)
xn−2k−1
1 y2k+1

1 dk.

Proof. It is easy to see that xn+yn
√
d is a solution. By multiplying the expressions xn+yn

√
d =

(x1 + y1
√
d)n and xn − yn

√
d = (x1 − y1

√
d)n, we get

x2n − dy2n = (x1 + y1
√
d)n(x1 − y1

√
d)n = (x21 − dy21)

n = 1.

In the following, it is necessary to prove that there are no other solutions than (3.6). Assume
that u+ v

√
d, u, v ∈ N, is a solution that is not obtained by formula (3.6). Hence, there exits

n ∈ N such that
(x1 + y1

√
d)n < u+ v

√
d < (x1 + y1

√
d)n+1.

This yields
1 < (u+ v

√
d)(x1 + y1

√
d)−n < x1 + y1

√
d,

and since (x1 + y1
√
d)−1 = x1 − y1

√
d

1 < (u+ v
√
d)(x1 − y1

√
d)n < x1 + y1

√
d.

Obviously,
a+ b

√
d = (u+ v

√
d)(x1 − y1

√
d)n

is a solution to Pell’s equation. If we show that a and b are positive integers, than we have a
contradiction with the fact that x1 + y1

√
d is a fundamental solution. Indeed,

2a = a+ b
√
d+ (a− b

√
d) = a+ b

√
d+ (a+ b

√
d)−1 > 0,

and
2b
√
d = a+ b

√
d− (a− b

√
d) = a+ b

√
d− (a+ b

√
d)−1 > 0,

because a+ b
√
d > 1 and 0 < (a− b

√
d) = (a+ b

√
d)−1 < 1.

Let S be a set of all integer solutions (x, y) to Pell’s equation such that x > 0, that is

S = {x+ y
√
d : x2 − dy2 = 1, (x, y) ∈ N× Z}.

Note that points (x, y) of S lie on the right branch of the hyperbola x2 − dy2 = 1. In addition,
S has a strong algebraic structure under common multiplication.

Theorem 3.6. The S is a multiplicative cyclic group.
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Proof. First, let us verify that S is closed under multiplication. Let x+ y
√
d and x′ + y′

√
d be

elements of S. Then

(x+ y
√
d)(x′ + y′

√
d) = xx′ + yy′d+ (xy′ + x′y)

√
d.

is a solution to Pell’s equation since

(xx′ + yy′d)2 − d(xy′ + x′y)2 = x2(x′2 − dy′2)− dy2(x′2 − dy′2) = x2 − dy2 = 1.

Also, xx′ + yy′d > 0 because x2 = 1+ dy2 > dy2, that is x >
√
d|y| and therefore xx′ > d|yy′|.

Hence, (x+ y
√
d)(x′ + y′

√
d) ∈ S.

Obviously, the neutral element for multiplication 1 ∈ S.The invertible element of x+y
√
d ∈

S is x−y
√
d ∈ S. According to Theorem 3.5, the fundamental solution x1+y1

√
d is a generator

of the group S.

3.3 Recurrence relations for solutions of Pell’s equation

Theorem 3.7. All solutions of Pell’s equation (3.1) in positive integers (xn, yn) satisfy the
following recurrence relations

xn = x1xn−1 + dy1yn−1,
yn = y1xn−1 + x1yn−1, n ≥ 1,

(3.7)

where (x1, y1) and (x0, y0) = (1, 0) are fundamental and trivial solution of (3.1), respectively.
Furthermore,

xn = 2x1xn−1 − xn−2,
yn = 2x1yn−1 − yn−2, n ≥ 2.

(3.8)

with the same initial conditions (x1, y1) and (x0, y0) = (1, 0).

Proof. Recurrences in (3.7) follow straight forward by (3.6), that is

(xn−1 + yn−1

√
d)(x1 + y1

√
d) = xn + yn

√
d.

Since x1 − y1
√
d = (x1 + y1

√
d)−1, we have

(xn−1 + yn−1

√
d)(x1 − y1

√
d) = xn−2 + yn−2

√
d.

Last two relations can be rewritten as

x1xn−1 + y1xn−1

√
d+ x1yn−1

√
d+ y1yn−1d = xn + yn

√
d,

x1xn−1 − y1xn−1

√
d+ x1yn−1

√
d− y1yn−1d = xn−2 + yn−2

√
d.

By adding them, we get (6.1).

Recurrences (3.7) can be rewritten in a matrix multiplication form:(
xn
yn

)
=

(
x1 dy1
y1 x1

)(
xn−1

yn−1

)
=

(
x1 dy1
y1 x1

)n(
1

0

)
. (3.9)

In addition, we have:(
xn dyn
yn xn

)
=

(
x1 dy1
y1 x1

)(
xn−1 dyn−1

yn−1 xn−1

)
=

(
x1 dy1
y1 x1

)n(
1 0
0 1

)
=

(
x1 dy1
y1 x1

)n

. (3.10)

This matrix form of the recursions allows us to derive useful identities satisfied by the
solutions of the Pell equation.
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3.4 Solving Pell’s equation using continued fractions

We have established that Pell’s equation is always solvable and described its set of solutions.
However, we still do not know how to determine a fundamental solution. The smallest positive
solution of Pell’s equation can, in principle, be found by inspection: we check whether 1 + dy2

is a perfect square for y = 1, 2, . . .. However, this method is inefficient, since even for small
values of d, the fundamental solution can be extremely large. For example, the fundamental
solution of the equation x2 − 61y2 = 1 is (1 766 319 049, 226 153 980). An effective method is
based on the continued fraction expansion of

√
d into a simple continued fraction (described in

Section 2.4).

Theorem 3.8. If (u, v) ∈ N2 is a solution of Pell’s equation x2 − dy2 = 1, then
u

v
is a

convergent of the continued fraction expansion of
√
d.

Proof. Since
(u− v

√
d)(u+ v

√
d) = 1, (3.11)

we conclude that u − v
√
d > 0 and

u

v
>

√
d. Also, (3.11) implies that u − v

√
d =

1

u+ v
√
d
.

Hence,
u

v
−
√
d =

1

v(u+ v
√
d)

=
1

v2
(u
v
+
√
d
) <

1

2
√
dv2

<
1

2v2
.

Note that 0 <
u

v
−

√
d =

∣∣∣u
v
−
√
d
∣∣∣ < 1

2v2
. According to Theorem 2.3

u

v
is a convergent of

√
d.

Remark 3.9. With slight modifications, it can be shown that the statement of Theorem 3.4 is
also valid for all equations of the form x2 − dy2 = N where |N | <

√
d.

Theorem tells us that all positive integer solutions of Pell’s equation are among the conver-
gents of

√
d. Moreover, we can determine exactly which convergents are solutions.

Theorem 3.10. Let r be the length of the period in the continued fraction expansion of
√
d

and let (pn/qn) denote the convergents of
√
d.

If r is even, then the equation x2−dy2 = −1 has no solution, and all solutions of x2−dy2 = 1
are (pnr−1, qnr−1) for n ∈ N.

If r is odd, all solutions of x2−dy2 = −1 are (pnr−1, qnr−1) for odd n ∈ N and all solutions
of x2 − dy2 = 1 are (pnr−1, qnr−1) for even n ∈ N.

Remark 3.11. If r is even, then the fundamental solution of x2 − dy2 = 1 is (pr−1, qr−1). If
r is odd, then the fundamental solution of x2 − dy2 = −1 is (pr−1, qr−1)and the fundamental
solution of x2 − dy2 = 1 is (p2r−1, q2r−1), since

p2r−1 + q2r−1

√
d = (pr−1 + qr−1

√
d)2.

From the previous remark, we now understand why some fundamental solutions of Pell’s
equation can be very large even for small values of d. So, for d = 61 we get

√
61 = [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14],

and since the period is large and odd (r = 11), the fundamental solution of x2 − 61y2 = 1 is

(x0, y0) = (p21, q21) = (1 766 319 049, 226 153 980).
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Assignment 2. .

i) Find the continued fraction of F13/F12, where Fn is nth Fibonacci number. (Use the
Euclidean algorithm).

ii) Find the value of the real number α = [1, 2, 1, 2, 3].

iii) Find the continued fraction of α =
−5 +

√
10

4
using the algorithm (2.9).

iv) Find the continued fraction of α =
√
29 using the algorithm (2.10).

v) With notations as in Theorem 3.5 and 3.7, prove the following sum and subtraction
identities:

xm±n = xmxn ± dymyn,
ym±n = xnym ± xmyn, m ≥ n.

In particular, “double angle identities” hold,

x2n = 2x2n − 1,
y2n = 2xnyn, n ≥ 0.

Hint: Use (3.10)

vi) Find the fundamental solution of Pell’s equation x2 − dy2 = 1 for d = 29 and d = 39.
Also, list all solutions such that y < 106.

Determine whether the negative Pell’s equation x2−dy2 = −1 is solvable for these values
of d’s?
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Chapter 4

Extension of a Diophantine pair to a
triple

In Section 1.3 we showed that the problem of extending Diophantine pairs to triples leads to
solving certain Pellian equations. Let us briefly recall this connection. Given a Diophantine
pair {a, b}, a < b, we seek an element c such that

ac+ 1 = s2, bc+ 1 = t2,

for some s, t > 0. By eliminating c from previous two equations, we reduce the problem to a
Pell-type equation in two unknowns t and s:

at2 − bs2 = a− b,

which can be rewritten as
(at)2 − abs2 = a(a− b).

Hence, in this chapter we turn to the theory of Pellian equations, i.e., equations of the form

X2 −DY 2 = N.

We have already observed that if a Pellian equation is solvable, then it has infinitely many
solutions, because the product of a solution to the Pellian equation and a solution to the
associated Pell equation yields another solution to the same Pellian equation. Moreover, the
specific Pellian equation that arises from our extension problem is always solvable, since one
solution comes from the regular extension of the pair {a, b}, namely c = a+ b+ 2r.

4.1 Pellian equations

Assume that

a+ b
√
d is a solution to the Pellian eq. x2 − dy2 = N

and that

u+ v
√
d is a solution to the Pell equation x2 − dy2 = 1.
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Then
(a+ b

√
d)(u+ v

√
d) = (ua+ vb) + (av + ub)

√
d

is again a solution of x2 − dy2 = N .
If a + b

√
d and a′ + b′

√
d are solutions of the Pellian equation, we say that a′ + b′

√
d is

associated with a+ b
√
d (3.2) if

a′ + b′
√
d = (a+ b

√
d)(u+ v

√
d),

for some solution u+ v
√
d of Pell’s equation (3.1).

Proposition 4.1. The relation of being associated is an equivalence relation on the set of all
solutions of the Pellian equation x2 − dy2 = N .

Proof. We verify the three properties of an equivalence relation:
Reflexivity. Any solution a + b

√
d is associated with itself because we can multiply it by

the trivial solution, 1 + 0
√
d, of Pell’s equation .

Symmetry. Assume that

a′ + b′
√
d is associated with a+ b

√
d via u+ v

√
d.

By multiplying the expression

a′ + b′
√
d = (a+ b

√
d)(u+ v

√
d)

by u− v
√
d (also a solution of the Pell’s equation), we get

(a′ + b′
√
d)(u− v

√
d) = a+ b

√
d

Hence, a+ b
√
d is associated with a′ + b′

√
d.

Transitivity. Assume that

a′ + b′
√
d is associated with a+ b

√
d via u+ v

√
d

and that

a′′ + b′′
√
d is associated with a′ + b′

√
d via u′ + v′

√
d.

Then
a′′ + b′′

√
d = (a′ + b′

√
d)(u′ + v′

√
d) = (a+ b

√
d)(u+ v

√
d)(u′ + v′

√
d).

Since the product (u + v
√
d)(u′ + v′

√
d) is again a solution of the Pell’s equation, and thus

a′′ + b′′
√
d is associated with a+ b

√
d.

In the light of Proposition 4.1, we speak of two associated solutions of the Pellian equations.
Also, all mutually associated solutions form a single class of solutions.

The following proposition provides a simple criterion for determining when two solutions
are associated.

Proposition 4.2. Two solution a+b
√
d and a′+b′

√
d of x2−dy2 = N are associated solutions

if and only if
aa′ ≡ bb′d (mod N), ab′ ≡ a′b (mod N).

24



Diophantine m-tuples

Proof. We prove both directions of the statement.
Necessity : Left as an exercise. (Part of Assignment 3.)
Sufficiency : The congruences aa′ ≡ bb′d (mod N) and ab′ ≡ a′b (mod N), imply that there

exist k, l ∈ Z such that

aa′ = bb′d+ kN (4.1)

ab′ = a′b+ lN. (4.2)

Multiplying (4.1) by b′ and (4.2) by −a′, and adding them we obtain

0 = b(b′2d− a′2︸ ︷︷ ︸
=−N

) +N(kb′ − la′).

This implies that
b = b′k − a′l. (4.3)

Similarly, multiplying (4.1) by a′ and (4.2) by −b′d, and adding them we have

a(−b′2d+ a′2︸ ︷︷ ︸
=N

) = N(a′k − lb′d).

So,
a = a′k − db′l. (4.4)

Now, if we show that (k, l) is a solution to the Pell’s equation x2 − dy2 = 1, then from (4.4)
and (4.3) we conclude that (a, b) and (a′, b′) are associated. Squaring both equations (4.1) and
(4.2), and combining them appropriately, we get

a2a′2 + b2b′2d2 − 2aba′b′d = k2N2,

a2b′2 + a′2b2 − 2aba′b′d = l2N2.

Multiplying the last expression by −d and then adding these two equalities yields to

a2(a′2 − b′2d︸ ︷︷ ︸
=N

)− db2(a′2 − b′2d︸ ︷︷ ︸
N

) = (k2 − dl2)N2.

Hence,
N(a2 − db2) = N2 = (k2 − dl2)N2

shows that (k, l) is solution of the Pell’s equation.

Let K be a class of solutions, that is

K = {xi + yi
√
d : i ∈ N},

then the class
K = {xi − yi

√
d : i ∈ N}

is called the conjugate class. If K = K holds, we say that the class K is ambiguous. Note
that if the class K is generated by a solution a+ b

√
d, then the conjugate class K is generated

by a − b
√
d. Therefore, if a + b

√
d and a − b

√
d belong to the same class, i.e., are associated

solutions, then K = K and the class is ambiguous. In other words, a class is ambiguous
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precisely when it is invariant under conjugation. This situation occurs when the generator of
the class, say a+ b

√
d, is associated with its own conjugate a− b

√
d.

Within a class K, we define the fundamental solution as the solution x∗ + y∗
√
d for which

y∗ is the smallest possible non-negative value among all elements in K. Under this condition,
x∗ is uniquely determined unless the class K is ambiguous. If K is ambiguous, then we choose
x∗ such that x∗ ≥ 0. Note that |x∗| has the least possible value within the class K. Such a
solution x∗ + y∗

√
d is called the fundamental solution of the Pellian equation in the class K.

The following result shows that there are only finitely many classes, that is finitely many
fundamental solutions of equation x2 − dy2 = N .

Theorem 4.3. Let u+v
√
d be the fundamental solution of Pell’s equation x2−dy2 = 1. Then

all fundamental solutions x∗ + y∗
√
d of Pellian equation x2 − dy2 = N satisfy the inequalities

0 ≤ y∗ ≤ v√
2(u+ ε)

√
|N |, |x∗| ≤

√
1

2
(u+ ε)|N |, (4.5)

where ε = 1 if N > 0 and ε = −1 if N < 0.

Proof. Assume that N < 0 and let

x′ + y′
√
d = (x∗ + y∗

√
d)(u− δv

√
d),

where

δ =

{
1, x∗ ≥ 0,
−1, x∗ < 0.

Apparently x′ + y′
√
d is a solution of x2 − dy2 = N that belongs to the class represented with

the fundamental solution, [x∗ + y∗
√
d]. Hence

y′ = y∗u− x∗δv ≥ y∗

and
0 < x∗δ︸︷︷︸

|x∗|

v = y∗u− y′ ≤ y∗(u− 1).

Squaring the previous inequality, gives

x∗2v2 ≤ y∗2(u2 − 2u+ 1),

i.e.
v2(dy∗2 +N) ≤ y∗2(u2 − 2u+ 1).

Further, we have
y∗2(dv2 − u2︸ ︷︷ ︸

−1

+2u− 1) ≤ −N︸︷︷︸
|N |

v2

and this implies the first inequality in (4.5). The second one follows from

x∗2 = dy∗2 +N ≤ − Nv2d

2(u− 1)
+N = −N

u− 1

2
.
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4.1.1 Steps for solving the Pellian equation x2 − dy2 = N

1. Solve Pell’s equation x2 − dy2 = 1

(a) Expand
√
d into a continued fraction using the following algorithm:

Continued fraction for
√
d

Initial terms: s0 = 0, t0 = 1, a0 = ⌊
√
d⌋

Recurrence relations:

si+1 = aiti − si, ti+1 =
d− s2i+1

ti
, ai+1 =

⌊
si+1 + a0

ti+1

⌋
, for i = 0, 1, 2, . . .

Termination condition: repeat until (s1, t1) = (sr+1, tr+1)

We get √
d = [a0, a1, a2, . . . , ar−1, 2a0],

(b) Find the fundamental solution u + v
√
d of Pell’s equation from the convergents of√

d (according to Theorem (3.10) and Remark (3.11)):

u+ v
√
d = pr−1 + qr−1

√
d, if r is even

u+ v
√
d = (pr−1 + qr−1

√
d)2 = p2r−1 + q2r−1

√
d, if r is odd.

( Here (pn/qn) denotes the convergents.)

Fundamental solution to Pell’s equation

Compute the denominators q0, . . . , qr−1 of the convergents using the recur-
rence:

qn = anqn−1 + qn−2, q−2 = 1, q−1 = 0, n ≥ 0.

i -2 -1 0 1 2 . . . ri−1

ai a0 a1 a2 . . . ar−1

qi 1 0 q0 q1 q2 . . . qr−1

Calculate the numerator of (r − 1)st convergent: pr−1 =
√
1 + dq2r−1. Then

u+ v
√
d =

{
pr−1 + qr−1

√
d, if r is even

(pr−1 + qr−1

√
d)2, if r is odd

(c) Optional step.
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All solution to the Pell’s equation in N

un + vn
√
d = (u+ v

√
d)n, n = 1, 2, . . .

Recurrence relations for sequences (xn) and (yn):

un = 2uun−1 − un−2,
vn = 2uvn−1 − vn−2, n ≥ 2,

with the initial conditions (u1, v1) = (u, v) and (u0, v0) = (1, 0).

2. Solve the general Pellian equation x2 − dy2 = N .

(a) Find fundamental solutions to x2 − dy2 = N (according to Theorem 4).

All fundamentals solution to the Pellian equation

Find all values of y∗ satisfying:

0 ≤ y∗ ≤ v√
2(u+ ε)

√
|N |,

where ε = 1 if N > 0 and ε = −1 if N < 0.
For each such y∗ compute:

x∗ = ±
√

N + d(y∗)2.

This yields a list of fundamental solutions:

x
(1)
0 + y

(1)
0

√
d, . . . , x

(ℓ)
0 + y

(ℓ)
0

√
d

To eliminate associated duplicates, apply the criterion from Proposition
(4.2)):

x
(i)
0 x

(j)
0 ≡ y

(i)
0 y

(j)
0 d (mod N), x

(i)
0 y

(j)
0 ≡ y

(i)
0 x

(j)
0 (mod N), 1 ≤ i < j ≤ ℓ.

The final list of non-associated fundamental solutions is:

x
(1)
0 + y

(1)
0

√
d, . . . , x

(k)
0 + y

k)
0

√
d,

where k ≤ ℓ.

(b) Generate all solutions
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All solution to the Pellian equation

x(j)n + y(j)n

√
d = (x

(j)
0 + y

(j)
0

√
d)(u+ v

√
d)n, n = 0, 1, 2, . . . ,

for j = 1, . . . , k.

Reccurence relations for (x
(j)
n ) and (y

(j)
n ):

x
(j)
n = 2ux

(j)
n−1 − x

(j)
n−2,

y
(j)
n = 2uy

(j)
n−1 − y

(j)
n−2, n ≥ 2.

with the initial conditions (x
(j)
0 , y

(j)
0 ) and (x

(j)
1 , y

(j)
1 ) = (x

(j)
0 u+ dy

(j)
0 v, x

(j)
0 v+

y
(j)
0 u), where (u, v) is the fundamental solution of x2 − dy2 = 1.

Example 3. Let us solve the equation

x2 − 6y2 = −29.

The fundamental solution of related Pell equation x2 − 6y2 = 1 is 5 + 2
√
6. According to

Theorem , fundamental solutions of x2 − 6y2 = −29 satisfy the inequalities

0 ≤ y∗ ≤ 2√
2 · 4

·
√
29 < 4,

0 < |x∗| ≤
√

1

2
· 4 · 29 < 8.

By testing, we get that the only fundamental solutions are 5+3
√
6 and −5+3

√
6 and they are

not associated since
5 · (−5) ̸≡ 3 · 3 · 6 (mod 29).

Hence all integer solutions of x2 − 6y2 = −29 are

x+ y
√
6 = ±(5 + 3

√
6)(5 + 2

√
6)n,

x+ y
√
6 = ±(−5 + 3

√
6)(5 + 2

√
6)n, n ∈ Z.

Example 4. The equation
x2 − 82y2 = 23

has no integer solutions. The fundamental solution of related Pell equation x2 − 82y2 = 1 is
162 + 18

√
82. Theorem gives us bounds for the fundamental solution x∗ + y∗

√
82. So, y∗ < 5.

We conclude that x2 − 82y2 = 23 has no integer solutions by testing for y = 1, 2, 3, 4.

4.2 Extension of the Diophantine pair {1, 3}
We seek for c ∈ N such that

c+ 1 = y2, 3c+ 1 = x2.

Eliminating c, we obtain the Pellian equation

x2 − 3y2 = −2.
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It is easy see that the fundamental solution of related Pell’s equation x2 − 3y2 = 1 is

u+ v
√
3 = 2 +

√
3.

Now let us find all fundamental solution y∗ of x2 − 3y2 = −2:

0 ≤ y∗ ≤ v√
2(u+ ε)

√
|N |.

Here, N = −2, ε = −1 and (u, v) = (2, 1). Thus,

0 ≤ y∗ ≤ 1 =⇒ y∗ = 1.

Next, we compute
(x∗)2 − 3(y∗)2 = 1 =⇒ x∗ = ±1.

Therefore, all fundamental solutions of x2 − 3y2 = −2 are

(x∗, y∗) = (±1, 1) or ± 1 +
√
3.

Since
1 · (−1) ≡ 1 · 1 · 3 (mod 2), 1 · 1 ≡ 1 · · · (−1) (mod 2)

these solutions are associated. All solution in N are given by

xn + yn
√
3 = (1 +

√
3)(2 +

√
3)n, n ≥ 0.

Here is a list of the first few solutions together with the corresponding values cn that extend
the pair {1, 3}:

n xn + yn
√
3 cn = y2n − 1

0 1 +
√
3 0

1 5 + 3
√
3 8

2 19 + 11
√
3 120

3 71 + 41
√
3 1680

4 265 + 153
√
3 23408

5 989 + 571
√
3 326040

6 691 + 2131
√
3 4541160

7 13775 + 7953
√
3 63250208

8 51409 + 29681
√
3 880961760

Note that the values of xn, yn and cn grow quite rapidly. In fact, this growth is exponential.
Moreover, the products of consecutive cn’s increased by 1 are prefect squares:

8 · 120 + 1 = 312, 120 · 1680 + 1 = 4492, 1680 · 23408 + 1 = 62712, . . .

Hence, the Diophantine pair {1, 3} can be extended to Diophantine quadruples:

{1, 3, 8, 120}, {1, 3, 120, 1680}, {1, 3, 1680, 23408}, . . .

Let us now derive a formula for cn and demonstrate that the observed properties hold in
general. By subtracting the expressions for the solutions:
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xn + yn
√
3 = (1 +

√
3)(2 +

√
3)n,

xn − yn
√
3 = (1−

√
3)(2−

√
3)n,

we get

yn =
1

2
√
3

(
(1 +

√
3)(2 +

√
3)n − (1−

√
3)(2−

√
3)n
)

=
1

2
√
3

(
(1 +

√
3)(2 +

√
3)n − (1−

√
3)(2 +

√
3)−n

)
. (4.6)

Thus, after simplification, we obtain

cn = y2n − 1

=
1

6

(
−4 + (2−

√
3)1+2n + (2 +

√
3)1+2n

)
.

We now verify that
cncn+1 + 1 = □.

Indeed,

cncn+1 + 1 =
1

36

(
(97− 56

√
3)(2−

√
3)4n + 16(4

√
3− 7)(2−

√
3)2n

− 16(7 + 4
√
3)(2 +

√
3)2n + (97 + 56

√
3)(2 +

√
3)4n + 66

)
=

1

36

(
(2 +

√
3)4+4n − 16(2−

√
3)2+2n − 16(2 +

√
3)2+2n + (2−

√
3)4+4n + 66

)
=

1

36

(
(2−

√
3)2+2n + (2 +

√
3)2+2n − 8

)2
4.3 Extension of the Diophantine pair {k − 1, k + 1}
Here we deal with the extension of a parametric Diophantine pair {k − 1, k + 1} for positive
integer k > 2. The procedure is the same as in the previous section. So, we are looking for
positive integer c and integers x, y such that

(k − 1)c+ 1 = y2, (k + 1)c+ 1 = x2.

By default, by eliminating c we get the Pellian equation

x2 − (k2 − 1)y2 = −2(k − 1). (4.7)

Related Pell’s equation x2 − (k2 − 1)y2 = 1 has an obvious fundamental solution:

(u, v) = (k, 1) or k +
√

k2 − 1.

All fundamental solutions of (4.7) satisfy the inequality

0 ≤ y∗ ≤ v√
2(u+ ε)

√
|N | for N = −2(k − 1), ε = −1, u = k, v = 1.
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Hence,

0 ≤ y∗ ≤ 1√
2(k − 1)

√
2(k − 1) = 1

and y∗ = 1 and x∗ = ±(k − 1). There are two possible fundamental solutions of (4.7):

(k − 1, 1), (−(k − 1), 1).

These solutions are associated since

(k − 1) · (−(k − 1)) ≡ 1 · 1 · (k2 − 1) (mod 2(k − 1)) ⇐⇒ −2k2 + 2k ≡ 0 (mod 2(k − 1))

and

(k − 1) · 1 ≡ 1 · (−(k − 1)) (mod 2(k − 1)) ⇐⇒ 2(k − 1) ≡ 0 (mod 2(k − 1)).

So, we reject one fundamental solution. All solutions in positive integers of (4.7) are:

xn + yn
√

k2 − 1 = (k − 1 +
√

k2 − 1)(k +
√
k2 − 1)n, n ≥ 0.

For the extension cn = y2n − 1, we need the expression for yn which can be obtained by
subtracting

xn + yn
√
k2 − 1 = (k − 1 +

√
k2 − 1)(k +

√
k2 − 1)n,

xn − yn
√

k2 − 1 = (k − 1−
√

k2 − 1)(k −
√

k2 − 1)n.

Thus,

yn =
1

2
√
k2 − 1

(
(k − 1 +

√
k2 − 1)(k +

√
k2 − 1)n − (k − 1−

√
k2 − 1)(k +

√
k2 − 1)−n

)
After simplification we have

cn =
1

2(k2 − 1)

(
(k +

√
k2 − 1)2n+1 + (k −

√
k2 − 1)2n+1 − 2k

)
and the product of two consecutives cn and cn+1 plus 1 is a perfect square:

cncn+1 + 1 =

(
1

2(k2 − 1)

(
(k +

√
k2 − 1)2n+2 + (k −

√
k2 − 1)2n+2 − 2k2

))2

.

Finally, we showed that
{k − 1, k + 1, cn, cn+1}

is a Diophantine quadruple for n > 0.

Assignment 3. (i) Find all non-associated fundamental solutions of

x2 − 7y2 = 57.

(ii) Find all c’s such that {8, 15, c} is a Diophantine triple and c < 1010.
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Chapter 5

Extension of a Diophantine triple to
a quadruple

5.1 Linear forms in logarithms

5.1.1 Brief historical overview

In this chapter, we describe the key results from Baker’s theory of linear forms in logarithms
of algebraic numbers. These results will be used to solve simultaneous Pell equations.

We begin with a brief overview of the historical development of the theory. In 1900, at
the International Congress of Mathematicians in Paris, David Hilbert presented a list of 23
problems he believed would be solved in the next century, and that their solution would require
the development of new methods. One of these wasHilbert’s Seventh Problem, which asked
for a proof of the transcendence of the number αβ for any algebraic number α ̸= 0, 1 and any
irrational algebraic number β.

This problem was solved in 1934 independently by Gelfond and Schneider. Their result,
now known as the Gelfond–Schneider Theorem, states that if α1, α2 ̸= 0 are algebraic numbers
such that logα1 and logα2 are linearly independent over Q, then

β1 logα1 + β2 logα2 ̸= 0

for all algebaric numbers β1 and β2. In 1935, Gelfond also obtained a lower bound for the
linear form

Λ = β1 logα1 + β2 logα2.

During the 1940s, he recognized that generalizing this result could enable the solution of various
problems in number theory.

In 1966, the British mathematician Alan Baker achieved this generalization. He proved
the following:

If

� α1, . . . , αn, β1, . . . , βn are non-zero algebraic numbers different from 1,

� β1, . . . , βn are irrational,

� the set {1, β1, . . . , βn} is linearly independent over Q,
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then the number

αβ1
1 αβ2

2 · · ·αβn
n

is transcedental. Additionally, Baker proved that for any algebraic number αn+1

αβ1
1 αβ2

2 · · ·αβn
n ̸= αn+1,

and the absolute value |αβ1
1 αβ2

2 · · ·αβn
n − αn+1| cannot be ”very small”.

The most important part of that was that Baker got an effective result in the form of lower
bound for the apsolute value of linear form of logarithms of algebraic numbers. This result
is known as Baker’s theorem and it is a powerful tool in solving various problems in number
theory, especially related to Diophantine equations. In 1970, Baker was awarded the Fields
Medal for his contributions.

The problem of finding a lower bound for

Λ∗ = αβ1
1 · · ·αβn

n − 1

(for Λ∗ ̸= 0) can be reduced to estimating a linear form in logarithms:

Λ = β1 logα1 + · · ·+ βn logαn ̸= 0,

since limx→0
log(1+x)

x = 1 and log(1 + x) ≈ x for small values of x. Also, Λ∗ = 0 if and only if
Λ = 0.

5.1.2 An overview of the most important theorems

We now present the original Baker’s theorem on linear forms in logarithms of algebraic numbers,
along with several variants relevant to the solution of simultaneous Pell equations. We begin
by defining some standard terms and notation.

Definition 5.1. A linear form in logarithms of algebraic numbers is an expression of the form

Λ = β1 logα1 + . . .+ βn logαn,

where αi, βi, i = 1, . . . , n complex algebraic numbers and log denotes the principle value
(branch) of the complex logarithm.

In our applications, the coefficients β1, . . . , βn will be integers and denoted by b1, . . . , bn.
Furthermore, α1, . . . , αn will be real algebraic numbers. So, log is the natural logarithm.

It is useful to recall the following terms:

� Algebraic number - a number that is a root of a nonzero polynomial in one variable with
integer (or rational) coefficients.

� Minimal polynomial of an algebraic number - a unique monic polynomial with rational
coefficients of least degree that has the number as a root.

� Degree of an algebraic number - an algebraic number is said to be of degree d if its
minimal polynomial has degree d.
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� Algebraic number field - an extension field K of the field of rational numbers Q such that
the field extension K/Q has a finite degree. (The degree means the dimension of the field
K as a vector space over Q.) Every subfield of C having finite degree over Q is of the
form Q(α) for some algebraic number α ∈ C. If α is a root of an irreducible polynomial
over Q having degree d, then

Q(α) = {a0 + a1α+ · · ·+ ad−1α
d−1 : a0, . . . , ad−1 ∈ Q}

and representation in this form is unique. In other words, {1, α, . . . , αd−1} is a basis for
Q(α) as a vector space over Q.

The following theorem is the original Baker’s theorem on linear form in logarithms of
algebraic numbers.

Theorem 5.2 (Baker, 1968). Suppose that k ≥ 2, and that α1, . . . , αk are non-zero algebraic
numbers, whose degrees do not exceed d and whose heights do not exceed A, where d ≥ 4 and
A ≥ 4. If the rational integers b1, . . . , bk ∈ Q satisfy

0 < |b1 logα1 + · · ·+ bk logαk| < e−δH ,

where 0 < δ ≤ 1 and
H = max{|b1|, . . . , |bk|},

then

H <
(
4k

2
δ−1d2k logA

)(2k+1)2

.

Note: Here, the term height refers to the naive height, defined as the maximum absolute
value of the coefficients of the minimal polynomial of the algebraic number.

Over time, the bound in Baker’s theorem has been improved, among other things, using
more sophisticated definitions of height (of an algebraic number).

On heights of algebraic numbers

The height of algebraic number is a key concept in Diophantine approximation. Assume that
α is an algebraic number of degree d and its minimal polynomial over Z is

p(x) = adx
d + · · ·+ a2x+ a0 = ad

d∏
i=1

(x− αi), a0, . . . , ad ∈ Z, (5.1)

where α1 = α and α2, . . . , αn are the complex conjugates (roots) of α.

� Standard or naive height :

H(α) = max{|a0|, |a1|, . . . , |ad|}. (5.2)

� Mahler measure:

M(α) = |ad|
d∏

i=1

max{1, |αi|}.

(It captures both the size of the coefficients and the size of the roots outside the unit
circle.)
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� Absolute logarithmic height or standard Weil’s height:

h(α) =
1

d
logM(α),

that is

h(α) =
1

d

log |ad|+
d∑

i=1

logmax{1, |αi|}︸ ︷︷ ︸
=max{0,log |αi|}

 . (5.3)

We may say that h(α) roughly measures how ”arithmetically complex” α is, i.e. how
large the coefficients in its minimal polynomial are and how large its conjugates are.

Example 5. Let’s compute the Weil’s height of the golden ratio,

α =
1 +

√
5

2
.

The minimal polynomial of α over Q is

p(x) = x2 − x− 1 =

x− 1 +
√
5

2︸ ︷︷ ︸
≈1.618


x− 1−

√
5

2︸ ︷︷ ︸
≈−0.618


So, α is an algebraic number of degree 2. Its Weil’s height is

h(α) =
1

2

(
log 1 + max{0, log 1 +

√
5

2
}+max{0, log −1 +

√
5

2
}

)
=

1

2
log

1 +
√
5

2
≈ 0.2406

In improved versions of Baker’s theorem, the following modified heights are used:

h′(α) = max{Dh(α), log |α|, 0.16},

and

h′′(α) = max{h(α), 1
D
| logα|, 1

D
},

where d | D.

Variants of Baker’s theorem

Theorem 5.3 (Baker-Wüstholz, 1993). Let

Λ = b1 logα1 + . . .+ bn logαn ̸= 0,

where αi are algebraic numbers and the coefficients bi are integers, i = 1, . . . , n. Then

log |Λ| > −18(n+ 1)!nn+1(32D)n+2 log(2nD)h′′(α1) · · ·h′′(αn) logB,

where D degree of the field extension Q(α1, . . . , αn), B = max{|b1|, . . . , |bn|}.

(The degree of the field extension Q(α1, . . . , αn) over Q, denoted D = [Q(α1, . . . , αn) : Q] ,
is the degree of the smallest field containing all α1, . . . , αn and Q.)

Theorem 5.4 (Matveev, 2001). With the assumptions from Theorem 5.3, we have

log |Λ| > −2 · 30n+4(n+ 1)6D2A1 · · ·An(1 + logD)(1 + logB),

where Ai ≥ h′(αi), i = 1, . . . , n.
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5.1.3 The Baker–Davenport reduction method

In this section, we present a result known as the Baker–Davenport reduction, which we will
frequently use to sharpen upper bounds for the size of solutions to Diophantine equations.
We state a practical version of the reduction method, as given in [14], which we will apply
throughout this work:

Lemma 5.5 (Baker–Davenport Reduction). Let κ, µ be real numbers and N ∈ N. Let p
q be a

convergent of the continued fraction expansion of κ such that q > 6N . Define

ε = ||µq|| −N · ||κq||,

where ||x|| denotes the distance from x to the nearest integer. If ε > 0, then for any constants
A > 0 and B > 1, the inequality

0 < nκ−m+ µ < A ·B−n

has no solutions in natural numbers m and n satisfying

log
(
Aq
ε

)
logB

≤ n ≤ N.

Proof. Assume 1 ≤ n ≤ N . Then we have:

0 < n(κq − p) + np−mq + µq < qAB−n,

which implies

qAB−n > |µq − (mq − np)| − n||κq|| ≥ ||µq|| −N ||κq|| = ε,

and consequently,

n <
log
(
Aq
ε

)
logB

.

Remark 5.6. The condition q > 6N in Lemma 5.5 is somewhat arbitrary. On the one hand,
we want to increase the likelihood that ε > 0 holds; on the other hand, we prefer smaller
values of q to obtain tighter bounds. From the properties of continued fractions, we know that
∥κq∥ < 1

q , while in general, we have no control over ∥µq∥. For this reason, it is reasonable to
assume q > 2N , and the choice q > 6N has been found to work well in practice.

Remark 5.7. If the condition ε > 0 is not satisfied, one may try using the next convergent of
κ and check whether the condition is then fulfilled.

5.2 Extension of the Diophantine Triple {1, 3, 8}
In this section, we demonstrate how the application of Baker’s theory of linear forms in log-
arithms of algebraic numbers—specifically, using Baker–Wüstholz’s theorem 5.3 or a similar
result—can be used to prove following theorem:
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Theorem 5.8 (Baker, Davenport, 1969). If {1, 3, 8, d} is a Diophantine quadruple, then d =
120.

As previously mentioned, this was first accomplished by Baker and Davenport in [2]. The
problem was introduced to them by J.H. van Lint (in March 1968), who had proved Theorem
5.8 under the assumption d < 101 700 000.

Assume d is a natural number such that {1, 3, 8, d} forms a Diophantine quadruple. Then
there exist x, y, z ∈ N satisfying:

d+ 1 = x2, 3d+ 1 = y2, 8d+ 1 = z2.

By eliminating d from the above equations, we obtain the system of Pell-type equations:

y2 − 3x2 = −2, (5.4)

z2 − 8x2 = −7. (5.5)

Thus, the problem of extending the Diophantine triple {1, 3, 8} is equivalent to solving the
system (5.4)–(5.5). One solution is clearly (1, 1, 1), which corresponds to the trivial extension
d = 0. Another solution, (11, 19, 31), yields the extension d = 120. Our aim is to determine
whether any other solutions exist. First, we note that there can only be finitely many such
solutions, which follows from the following theorem from [23]:

Theorem 5.9 (Siegel, 1926). Let f(x) be a polynomial with integer coefficients having at least
three distinct complex roots. Then the equation

y2 = f(x)

has only finitely many integer solutions.

Multiplying equations (5.4) and (5.5), and denoting t = yz, yields the equation

t2 = (3x2 − 2)(8x2 − 7),

which, by Theorem 5.9, has finitely many integer solutions. Hence, there are only finitely many
possible extensions of the set {1, 3, 8}.

The approach taken by Baker and Davenport in their paper involved the following steps:

(i) Express all solutions of the equations (5.4) and (5.5) using sequences involving powers of
quadratic irrationalities.

(ii) Derive an inequality involving an integer linear combination of logarithms of algebraic
numbers, i.e., a so-called linear form in logarithms.

(iii) Use Baker’s result, which provides a lower bound for such linear forms, to find X > 0
such that the system (5.4)–(5.5) has no solution for x > X.

(iv) Reduce the upper bound X using the method described in Section 5.1.3, which was
originally detailed in [2].
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Solutions of equations

In Section 4.2 we found all of (5.4), see (4.6) with the note that in this part we have swapped
the unknowns x and y. So, x is a solution in positive integers of (5.4) if x = vm, for some
m ≥ 0, where

vm =
1 +

√
3

2
√
3

(2 +
√
3)m − 1−

√
3

2
√
3

(2 +
√
3)−m, m ≥ 0.

Now consider equation (5.5). The fundamental solution of the related Pell equation z2 −
8x2 = 1 is (u, v) = (3, 1). By Theorem 4, we obtain:

0 ≤ x∗ ≤
√
7

2
, |z∗| ≤

√
7.

Thus, (z∗, x∗) ∈ {(1, 1), (−1, 1)}. By Proposition 4.2, these solutions are not associated, so all
solutions (z, x) in positive integers of (5.5) are given by

z + x
√
8 = (±1 +

√
8)(3 +

√
8)n, n ≥ 0,

which leads to

2x
√
8 = (±1 +

√
8)(3 +

√
8)n − (±1−

√
8)(3−

√
8)n, n ≥ 0. (5.6)

As in the previous case, we define sequences (wn)n≥0 and (w′
n)n≥0 to represent all solutions in

x:

wn =
1 +

√
8

2
√
8

(3 +
√
8)n − 1−

√
8

2
√
8

(3 +
√
8)−n,

w′
n =

−1 +
√
8

2
√
8

(3 +
√
8)n − −1−

√
8

2
√
8

(3 +
√
8)−n.

Finding x that satisfies both equations (5.4) and (5.5) is equivalent to finding non-negative
integers m and n such that

vm = wn or vm = w′
n,

that is, to finding the intersections of sequences (vm) with (wn) and (vm) with (w′
n). These

sequences intersect for m = n = 0 and m = n = 2, yielding d = 0 (trivial) and d = 120. In
what follows, we show that these are the only such intersections.

Application of Baker’s Theory of Linear Forms in Logarithms

Here, we demonstrate how Baker and Davenport, in [2], applied Theorem 5.2, which concerns
lower bounds for linear forms in logarithms of algebraic numbers.

Assume vm = wn for some m,n ≥ 2, i.e.,

1 +
√
3√

3
(2+

√
3)m − 1−

√
3√

3
(2+

√
3)−m =

1 +
√
8√

8
(3+

√
8)n − 1−

√
8√

8
(3+

√
8)−n = 2x. (5.7)

Note that (2 +
√
3)−m and (3 +

√
8)−n tend to zero as n,m → ∞. Therefore, we focus on the

dominant contributions in these expressions and define

P =
1 +

√
3√

3
(2 +

√
3)m, Q =

1 +
√
8√

8
(3 +

√
8)n.
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For sufficiently large m and n, if vm = wn, then P ≈ Q. Since 2 +
√
3 < 3 +

√
8, we expect

m ≥ n. That can be shown precisely. In terms of P and Q (5.7) becomes

P +
2

3
P−1 = Q+

7

8
Q−1.

From the inequality

P −Q =
7

8
Q−1 − 2

3
P−1 >

2

3
(Q−1 − P−1) =

2

3
(P −Q)Q−1P−1,

it follows that P > Q, hence m ≥ n. Define

Λ = log

(
P

Q

)
= m log(2 +

√
3)− n log(3 +

√
8) + log

(
(1 +

√
3)
√
8

(1 +
√
8)
√
3

)
.

Then Λ is a linear form in logarithms of the algebraic numbers

α1 = 2 +
√
3, α2 = 3 +

√
8, α3 =

(1 +
√
3)
√
8

(1 +
√
8)
√
3
,

and since P/Q > 1, clearly Λ > 0. If we can show Λ < e−m, Baker’s theorem 5.2 yields an
explicit upper bound on m.

We have

P −Q =
7

8
Q−1 − 2

3
P−1 =

7

8
(P − 7

8
)−1 − 2

3
P−1 <

1

4
P−1,

since Q > P − 7
8Q

−1 > P − 7
8 and when P > 80 for m ≥ 3. Therefrom,

0 < Λ = log
P

Q
= − log

(
1− P −Q

P

)
<

1

4
P−2 +

(
1

4
P−2

)2

< 0.26P−2,

where in the previous inequality we used that

− log(1− x) < x+ x2, for |x| < 0.5.

Hence

Λ < 0.26

(
1 +

√
3√

3

)−2

(7 + 4
√
3)−m < 13−m < e−m. (5.8)

Since we want to calculate an upper bound form using Baker’s theory, we need to determine
the minimal polynomials of the algebraic numbers α1, α2, α3. We get

p1(t) = t2 − 4t+ 1,

p2(t) = t2 − 6t+ 1,

p3(t) = 441t4 − 2016t3 + 2880t2 − 1536t+ 256,

respectively. We first apply the original Baker’s theorem 5.2. The inputs to this theorem are:

� d = 4 , since α1 and α2 are of degree 2, and α3 is of degree 4,

� A = max{H(α1), H(α2), H(α3)} = 2880 where denotes the naive height of H(αi) (see
(5.2)),
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� H = max{b1 = m, |b2| = n, b3 = 1} = m (k = 3),

� δ = 1.

Therefore, if vm = wn, Theorem 5.2 yields

n ≤ m < 10487.

This means that the equation vm = wn has no solution for m ≥ 10487.
Now, we also apply a stronger version of Theorem 5.2, namely the Baker–Wüstholz theorem

(Theorem 5.3), to compare the bounds for m. In the notation of that theorem, the coefficients
bi and the numbers αi, i = 1, 2, 3, are as before. Since Q(α1, α2, α3) = Q(α3), it follows that
D = 4.

IWe compute the standard logarithmic (Weil) heights of the algebraic numbers using the
formula

h(α) =
1

d
log

(
|ad|

d∏
i=1

max{1, |α(i)|}

)
,

where ad is the leading coefficient of the minimal polynomial of α, d is the degree of α, and
the α(i) are the roots (i.e., conjugates) of the minimal polynomial of α. We obtain

h(α1) =
1

2
logα1 < 0.66,

h(α2) =
1

2
logα2 < 0.89,

h(α3) =
1

4
log(441α3α

′
3) < 1.88,

where α′
3 = 4

21(
√
3(2 +

√
3)− 2(3 +

√
3)) > 1 and the other two roots of p3 are less than 1 in

absolute value.The modified heights are computed as

h′′(α) = max{h(α), 1
D
| logα|, 1

D
},

so we see that h′′(αi) = h(αi), i = 1, 2, 3.
Now the estimate from Theorem 5.3 becomes

log Λ > −18(3 + 1)!33+1(32 · 4)3+2 log(2 · 3 · 4)0.66 · 0.89 · 1.88 logm > −4.22 · 1015 logm,

and comparing with (5.8), we get

−m log 13 > −4.22 · 1015 logm,

which implies
m

logm
< 1.65 · 1015.

Since the function m 7→ m
logm is increasing, the above inequality fails for sufficiently large

m. Specifically, for
m > 6.4 · 1016, (5.9)

we obtain a contradiction with (5.9). Therefore, if vm = wn, then

n ≤ m < 6.4 · 1016,

which is a significantly better bound for the indices m and n than the one provided by Theorem
5.2.
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1.0×1015

1.5×1015

Figure 5.1: x 7→ x
log x , x 7→ 1.65 · 1015

5.2.1 Application of the Baker–Davenport reduction method

In the previous section, we showed that Λ < 13−m and m < M where M = 6.4 · 1016. Dividing
the inequality

0 < m logα1 − n logα2 + logα3 < 13−m.

by logα2 we obtain

0 < m
logα1

logα2
− n+

logα3

logα2
<

1

logα2
13−m, (5.10)

which corresponds exactly to the inequality that appears in Lemma 5.5. With the notation

κ =
logα1

logα2
, µ =

logα3

logα2
, A =

1

logα2
, B = 13,

Lemma 5.5 implies that inequality (5.10) has no solution in natural numbers m and n such
that

log
(
Aq
ε

)
logB

≤ m ≤ M, (5.11)

where p
q is a convergent from the continued fraction expansion of κ such that q > 6M , and

ε = ||µq|| −M · ||κq|| > 0.
The first convergent satisfying q > 6M is 36th convergent, no ε < 0 not all conditions of

the lemma are fulfilled. The next one, the 37. th convergent, satisfies both conditions:

q = 3075 296 607 888 933 649 > 6M, ε ≈ 0.295,

so according to (5.11), the new bound is M = 16.
The 7th convergent, q = 518, satisfies the lemma’s conditions for M = 16 (and ε ≈ 0.0262)

so the bound is further reduced to just M = 4.
An analogous procedure, as described in Sections 5.2 and 5.2.1, is carried out for the

equation vm = w′
n, m,n ≥ 2, after which the proof of Theorem 5.8 is finally completed.

Remark 5.10. The extension problem of the parametric Diophantine triple {k−1, k+1, 4k}is
considerably more complex and requires additional techniques, such as the congruence method
and the application of results from Diophantine approximations, particularly the hypergeometric
method (see [10]).
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Figure 5.2: Reduction algorithm (WolframAlpha)

Assignment 4. Show that the Diophantine triple {1, 8, 15} extends uniquely to a Diophan-
tine quadruple. Apply the Baker-Wüstholz Theorem 5.3 and reduction method to one pair of
sequences obtained by solving the related Pellian equations.
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Chapter 6

Diophantine quadruples with the
property D(n)

Definition 6.1. Let n be an integer. A set of integers {a1, a2, . . . , am} is said to have the
Diophantine property D(n) if the product of any two distinct elements of the set, increased
by n, is a perfect square; that is, if

aiaj + n = n2
ij , 1 ≤ i < j ≤ m (6.1)

for some nij ∈ Z. If all elements of the set are nonzero, i.e. ai ̸= 0, i = 1, . . . ,m, then such a
set is called a Diophantine m-tuple with the property D(n), or more briefly, a D(n), or
more briefly, a D(n)-m-tuple.

Remark 6.2. Definition 6.1 generalizes the classical notion of a Diophantine m-tuple. Specifi-
cally, a Diophantinem-tuple with the propertyD(1) is exactly a classical Diophantinem-tuple.

Proposition 6.3. Let {a1, a2, . . . , am} be a Diophantine m-tuple with the propertyD(n). Then
for every w ∈ Z, w ̸= 0,

{a1w, a2w, . . . , amw}

is a Diophantine m-tuple with the property D(nw2).

Proof. Multiplying the relations in (6.1) by w2, we obtain

(aiw)(ajw) + nw2 = (nijw)
2, 1 ≤ i < j ≤ m,

from which the proposition follows directly.

Example 6. Multiplying the rational Diophantine quadruple{
1

16
,
33

16
,
17

4
,
105

16

}
by 16 yields the Diophantine D(256) quadruple: {1, 33, 68, 105}

Remark 6.4. Proposition 6.3 can also be applied to rational Diophantine m-tuples with the
property D(n), as we saw in the previous example. In such cases, if we are interested only in
integer sets, we must verify that the set {a1w, a2w, . . . , amw} ⊂ Z, and if n ̸∈ Z, and that if
n /∈ Z, then nw2 ∈ Z.
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We aim to describe the set of all integers n for which there exists a Diophantine quadruple
with the property D(n). Parametric, or polynomial, formulas for D(n)-quadruples play an
important role in addressing this problem. We will describe their construction in the next
section. First, let us highlight an immediate consequence of Proposition 6.3, based on the fact
that there exist infinitely many Diophantine quadruples with the property D(1).

Corollary 6.5. For every l ∈ Z, l ̸= 0, there exist infinitely many Diophantine quadruples
with the property D(l2).

6.1 Polynomial formulas for D(n)-quadruples

Since the elements of our Diophantine sets, i.e. D(n)-m-tuples, will be polynomials in one
or more variables with integer (and sometimes rational) coefficients, we adopt the following
convention: we say that a set of polynomials has the property D(P ) if the product of any two
distinct elements, increased by P , is equal to the square of some polynomial with integer (or
rational) coefficients.

The idea behind constructing polynomial Diophantine sets can be illustrated by the follow-
ing set of polynomials:

{x, x+ 2, 4x+ 4, 9x+ 6}.

Verifying the condition (6.1) for n = 1, we obtain:

x(x+ 2) + 1 = (x+ 1)2, x(4x+ 4) + 1 = (2x+ 1)2, x(9x+ 6) + 1 = (3x+ 1)2,

(x+2)(4x+4)+1 = (2x+3)2, (x+ 2)(9x+ 6) + 1 = 13 + 24x+ 9x2, (4x+4)(9x+6)+1 = (6x+5)2,

from which we can conclude that this set of polynomials is almost a Diophantine quadruple.
What is missing is the “underlined condition”, i.e. the condition that the product of the second
and fourth elements, increased by one, yields the square of some linear polynomial. Therefore,
if there exists a rational number x that satisfies the equation

(x+ 2)(9x+ 6) + 1 = y2,

then the given set is a (rational) Diophantine quadruple. It turns out that one solution is
(x, y) = ( 1

16 ,
61
16) which corresponds precisely to the rational quadruple discovered by Diophan-

tus himself.
Let {a, b} be an arbitrary set with the propertyD(n) for some integer n. Then, by definition,

there exists an x ∈ Z such that
ab+ n = x2. (6.2)

We can extend the set {a, b} to the set {a, b, a+ b+2x}. Let’s verify that the new set also has
the D(n) property:

a(a+ b+ 2x) + n = a2 + ab+ 2ax+ n = a2 + 2ax+ x2 = (a+ x)2, (6.3)

and similarly
b(a+ b+ 2x) + n = (b+ x)2. (6.4)

To obtain a quadruple, we apply the same construction to the set

{b, a+ b+ 2x},
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that is we add the element

b+ (a+ b+ 2x) + 2(b+ x) = a+ 4b+ 4x.

Hence, the triple {b, a+ b+2x, a+4b+4x} has the property D(n). Similarly to (6.3) and (6.4)
we have

b(a+ 4b+ 4x) + n = (b+ (b+ x))2 = (2b+ x)2, (6.5)

(a+ b+ 2x)(a+ 4b+ 4x) + n = (a+ b+ 2x+ (b+ x))2 = (a+ 2b+ 3x)2, (6.6)

assuming that (6.2) holds.
Now consider the set

{a, b, a+ b+ 2x, a+ 4b+ 4x}. (6.7)

It is easy to see that (6.7) is almost a set with the property D(n). Out of the six conditions
that should be satisfied, five are fulfilled, namely (6.2)–(6.6). Therefore, we conclude that (6.7)
has the D(n) property if and only if the product of the first and fourth elements, increased by
n, is a perfect square, that is, if and only if

a(a+ 4b+ 4x) + n = y2, (6.8)

for some x, y ∈ Z. Let us expand this equation and use (6.2):

a2 + 4ab+ 4ax+ n = y2,

a2 + 4(x2 − n) + 4ax+ n = y2,

a2 + 4ax+ 4x2 − 3n = y2.

From which we get:

3n = a2 + 4x2 + 4ax− y2

= (a+ 2x)2 − y2

= (a+ 2x− y)(a+ 2x+ y).

We will solve equation (6.8) by assuming some of the possible factorizations of the number 3n,
which will lead us to linear systems in x and y. We proceed by assuming one of the following
two cases:

1.
a+ 2x− y = 3,
a+ 2x+ y = n.

(6.9)

2.
a+ 2x− y = 1,
a+ 2x+ y = 3n.

(6.10)

CASE 1. Solving the system (6.9) yields the solution

(x, y) =

(
1

4
(n− 2a+ 3),

1

2
(n− 3)

)
. (6.11)

The components of the solution (6.11) must be integers, which gives us the conditions

n− 2a+ 3 ≡ 0 (mod 4), n− 3 ≡ 0 (mod 2).
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The second condition implies that n must be odd, i.e., n = 2l+ 1 for some l ∈ Z. Substituting
into the first condition gives

2l − 2a+ 4 ≡ 0 (mod 4),

2l ≡ 2a (mod 4),

l ≡ a (mod 2).

Thus, l = a+ 2k for some k ∈ Z, so that

n = 2(a+ 2k) + 1. (6.12)

From (6.11), we find that

x =
1

4
(n− 2a+ 3) =

1

4
(2(a+ 2k) + 1− 2a+ 3) = k + 1,

so the set in (6.7) becomes

{a, b, a+ b+ 2(k + 1), a+ 4b+ 4(k + 1)} (6.13)

and has the property D(2(a+2k)+1) under condition (6.2). We use this condition to eliminate
the parameter b:

b =
x2 − n

a
=

(k + 1)2 − (2(a+ 2k) + 1)

a
,

=
k2 − 2k − 2a

a
=

k2 − 2k

a
− 2.

The last condition we must satisfy is that the parameter b is an integer, i.e.

k2 − 2k = k(k − 2) ≡ 0 (mod a).

We see that b will be an integer if k takes one of the following forms:

k = ak′, (6.14)

k = ak′ + 2, (6.15)

for k′ ∈ Z. Since k can take either of these two forms, we consider two subcases separately.

1.A) Under assumption (6.14), we get

b =
ak′(ak′ − 2)

a
− 2 = k′(ak′ − 2)− 2,

n = 2(a+ 2ak′) + 1 = 2a(2k′ + 1) + 1,

and substituting into (6.13) yields the set

{a, k′(ak′ − 2)− 2, a+ k′(ak′ − 2)− 2 + 2(ak′ + 1), a+ 4(k′(ak′ − 2)− 2) + 4(ak′ + 1)},

which simplifies to

{a, ak′2 − 2k′ − 2, a(k′ + 1)2 − 2k′, a(2k′ + 1)2 − 4(2k′ + 1)}

with the property D(2a(2k′ + 1) + 1), for all a, k′ ∈ Z.
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1.B) Under assumption (6.15), we get

b =
(ak′ + 2)(ak′)

a
− 2 = k′(ak′ + 2)− 2,

n = 2(a+ 2(ak′ + 2)) + 1 = 2a(2k′ + 1) + 9,

and according to (6.13), the set

{a, ak′2 + 2k′ − 2+, a(k′ + 1)2 + 2(k′ + 2), a(2k′ + 1)2 + 4(2k′ + 1)}

has the property D(2a(2k′ + 1) + 9) for all a, k′ ∈ Z.

CASE 2. Similarly, as in the previous case, by solving (6.10) we get the set

{a, a(1 + 3k′)2 + 2k′, a(2 + 3k′)2 + 2(1 + k′), 9a(1 + 2k′)2 + 4(1 + 2k′)}

which has D(2a(2k′ + 1) + 1)-property, and several other similar formulas that we will omit.

Theorem 6.6. Let m, k ∈ Z. The sets

{m,mk2 − 2k − 2,m(k + 1)2 − 2k,m(2k + 1)2 − 4(2k + 1)}, (6.16)

{m,m(1 + 3k)2 + 2k,m(2 + 3k)2 + 2(1 + k), 9m(1 + 2k)2 + 4(1 + 2k)} (6.17)

have the D(2m(2k + 1) + 1)-property, and the set

{m,mk2 + 2k − 2+,m(k + 1)2 + 2(k + 2),m(2k + 1)2 + 4(2k + 1)} (6.18)

has the D(2m(2k + 1) + 9)-property.

Remark 6.7. Theorem 6.6 is valid in any commutative ring with unity.

Remark 6.8. The sets given in Theorem 6.6 will be D(n)-quadruples if all elements are nonzero
and mutually distinct. For instance, m = 2 and k = 3, (6.18) gives

{−2,−14,−22,−70},

and that is a D(−19)-quadruple. On the other hand, for m = 1 and k = −3 (6.18) gives

{1, 1, 2, 5},

which is not a D(−1)-quadruple.

6.2 Nonexistence of a D(n)-quadruple in Z

Theorem 6.9. Let n be an integer such that n ≡ 2 (mod 4). Then there is no D(n)-quadruple
in Z.

Proof. Assume the contrary: let n = 4k+2 for some k ∈ Z, and suppose that {a1, a2, a3, a4} ⊂ Z
is a set with D(4k + 2)-property. Then

aiaj + (4k + 2) = b2ij , 1 ≤ i < j ≤ 4,

48



Diophantine m-tuples

where bij ∈ Z. Since b2ij ≡ 0 or 1 (mod 4), it follows that

aiaj ≡ 2 or 3 (mod 4).

Therefore, none of the ai is divisible by 4, and hence

a1, a2, a3, a4 (mod 4) ∈ {1, 2, 3}.

By Dirichlet’s box principle (or the pigeonhole principle), among these four residues there must
be at least two equal, say as ≡ at (mod 4) with s ̸= t. This means that

asat ≡ m2 ≡ 0 or 1 (mod 4),

which is a contradiction since asat mod 4 ∈ {2, 3}.

6.3 Existence of D(n)-quadruples in Z

Theorem 6.10. If n is not of the form 4k + 2 and n is not in the set

S = {−4,−3,−1, 3, 5, 8, 12, 20},

then there exists at least one D(n)-quadruple.

Proof. We assume that
n = 2N + 1 or n = 4N, N ∈ Z.

We aim to find integers m and k such that 2m(2k + 1) + 1 = n, since the set (6.17) has the
D(2m(2k + 1) + 1)-property. We will consider the cases n ≡ 1 (mod 2) and n ≡ 0 (mod 4)
separately.

Step I: n = 2N + 1 (n is odd)
We seek integer solutions to

2m(2k + 1) + 1 = 2N + 1 ⇐⇒ m(2k + 1) = N. (6.19)

� For m = 1, we have N = 2k + 1, so n = 4k + 3 and set

{1, 9k2 + 8k + 1, 9k2 + 14k + 6, 36k2 + 44k + 13} (6.20)

has the D(4k + 3)-property.

� If N = 2l is even, then
m(2k + 1) = 2l.

Assume that m = 2. Hence l = 2k+1 and n = 4(2k+1)+1 = 8k+5. For (m, k) = (2, k)
the set (6.17)

{2, 18k2 + 14k + 2, 18k2 + 26k + 10, 72k2 + 80k + 22} (6.21)

has the D(8k + 5)-property.

� If N = 4l, then m(2k + 1) = 4l. Choose m = 4 and k = l−1
2 , yielding the set

{4, 9l2 − 5l, 9l2 + 7l + 2, 36l2 + 4l} (6.22)

with property D(8l + 1).
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Thus, for any odd n, there exists a D(n)-quadruple, provided the sets do not contain
duplicate or zero elements (to be analyzed in the third stage of the proof).

Step II: n = 4N
We attempt to solve

2m(2k + 1) + 1 = 4N. (6.23)

but there are no integers m, k satisfying this equation directly, so the set (6.17) might not yield
integer entries. To resolve this, we apply Proposition 6.3, which allows multiplying a D(n)-set
by a rational w to obtain a D(nw2)-set.

� Choose (m, k) =
(
1
2 , l − 1

)
. Then (6.17) becomes:{
1

2
,
9l2

2
− 4l,

9l2

2
− l +

1

2
, 18l2 − 10l +

1

2

}
(6.24)

a set with the D(2l)-propery. Multiply each element by 2 to get an integer D(8l)-set:

{1, 9l2 − 8l, 9l2 − 2l + 1, 36l2 − 20l + 1}. (6.25)

� For n = 8l + 4 = 4(2l + 1), we aim for a D(16l + 12)-quadruple. Take the set (6.20) for
k = l and multiply it by 2:

{2, 18l2 + 16l + 2, 18l2 + 28l + 12, 72l2 + 88l + 26}. (6.26)

� For n = 16l + 4 = 4(4l + 1), solve

2m(2k + 1) + 1 = 4l + 1.

Choose (m, k) =
(
2, l−1

2

)
, yielding a D(4l + 1)-set:{
2,

9l2

2
− 2l − 1

2
,
9l2

2
+ 4l +

3

2
, 18l2 + 4l

}
Multiplying by 2, we get the set with the D(16l + 4)-property:

{4, 9l2 − 4l − 1, 9l2 + 8l + 3, 36l2 + 8l}. (6.27)

Thus, for every n ≡ 0 (mod 4) (excluding the problematic form n = 4k + 2), we can
construct a D(n)-quadruple.

Step III: Elimination of degenerate cases
While the constructions in Steps I and II produce parameterized D(n)-quadruples, we must

exclude specific parameter values that lead to degenerate sets. We focus on ensuring that all
elements are distinct and nonzero.

We illustrate this process with one concrete example – the set (6.20). Denote the elements
of (6.20) as:

p1(k) = 1,

p2(k) = 9k2 + 8k + 1,

p3(k) = 9k2 + 14k + 6,

p4(k) = 36k2 + 44k + 13

We analyze possible degeneracies:
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� Check for zero elements.

None of the previous polynomials have integer zeros.

� Check for duplicates:

If
pi(k) = pj(k), 1 ≤ i < j ≤ 4,

for some k ∈ Z. So, we are looking for integer zeros of the following polynomials:

(p2 − p1)(k) = 9k2 + 8k,

(p3 − p1)(k) = 9k2 + 14k + 5,

(p4 − p1)(k) = 36k2 + 44k + 12,

(p3 − p2)(k) = 6k + 5,

(p4 − p2)(k) = 27k2 + 36k + 12,

(p4 − p3)(k) = 27k2 + 30k + 7,

So, for l = 0 and corresponding n = 3 we have a set whose first two elements are

{1, 1, 6, 13},

and for l = −1 and corresponding n = −1 we have a set whose first and third elements
are

{1, 2, 1, 5}.

By examining the possibilities for the remaining sets, we obtain the following exceptions:

{−12,−7,−4,−3,−1, 0, 1, 3, 4, 5, 8, 9, 12, 20}.

The case n = 1 is resolved (since there exist infinitely many Diophantine quadruples). The sets
{1, 12, 28, 76} and {1, 8, 11, 16} are D(−12) and D(−7) quadruples, respectively. Furthermore,
there are infinitely many D(0) quadruples. Indeed, a2, b2, c2, d2 is a D(0) quadruple for any
four nonzero integers a, b, c, d. Moreover, for n that is a perfect square, there are infinitely
many D(n) quadruples (Corollary 6.5), so we can eliminate the cases n = 4, 9. Therefore, we
have not found a D(n) quadruple only for n ∈ {−4,−3,−1, 3, 5, 8, 12, 20}.

For clarity, we highlight the results obtained in the proof of the previous theorem in the
following corollary.

Corollary 6.11. Let k ∈ Z. Then, for n of the given form, with finitely many specified
exceptions, the following sets represent D(n) quadruples:

� n = 4k + 3 :
1, 9k2 + 8k + 1, 9k2 + 14k + 6, 36k2 + 44k + 13, (6.28)

for k ̸= 0,−1, i.e., n ̸= 3,−1,

� n = 8k + 1 :
{4, 9k2 − 5k, 9k2 + 7k + 2, 36k2 + 4k}, (6.29)

for k ̸= 0, 1,−1, i.e., n ̸= 1, 9,−7,
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� n = 8k + 5 :
{2, 18k2 + 14k + 2, 18k2 + 26k + 10, 72k2 + 80k + 22}, (6.30)

for k ̸= 0,−1, i.e., n ̸= 5,−3,

� n = 8k :
{1, 9k2 − 8k, 9k2 − 2k + 1, 36k2 − 20k + 1}, (6.31)

for k ̸= 0, 1, i.e., n ̸= 0, 8,

� n = 16k + 4 :
{4, 9k2 − 4k − 1, 9k2 + 8k + 3, 36k2 + 8k}, (6.32)

for k ̸= 0, 1,−1, i.e., n ̸= 4, 20,−12,

� n = 16k + 12 :

{2, 18k2 + 16k + 2, 18k2 + 28k + 12, 72k2 + 88k + 26}, (6.33)

for k ̸= 0,−1, i.e., n ̸= 12,−4.

Corollary 6.12. For every rational number q, there exists a four-element set of rational num-
bers such that the product of any two distinct elements of the set, increased by q, is a square
of a rational number.

Proof. Let q =
m

n
,m ∈ Z, n ∈ N. Then, for k = 100n2q, it holds that k ∈ Z, k ≡ 0 (mod 4)

i |k| ≥ 100. Therefore, by Theorem 6.10, there exists a Diophantine quadruple {a1, a2, a3, a4}
with the property D(k). It follows that the set

{ a1
10n

,
a2
10n

,
a3
10n

,
a4
10n

}
has the property D(q).

6.4 Connection between D(n) quadruples and the difference of
two squares

Theorem 6.13. An integer n can be expressed as the difference of squares of two integers if
and only if n ̸≡ 2 (mod 4).

Proof. Assume n = x2 − y2, x, y ∈ Z. Since the square of an integer leaves a remainder of 0 or
1 modulo 4, it follows that n leaves a remainder of 0, 1, or 3 modulo 4.

Conversely, if we assume n ̸≡ 2 (mod 4) , then n = 4k or n = 4k+1 or n = 4k+3 for k ∈ Z.
The numbers of these forms can be represented as a difference of two squares of integers:

4k = (k + 1)2 − (k − 1)2,

2k + 1 = (k + 1)2 − k2

Based on what has been shown in the previous sections, we have the following:

Theorem 6.14. Let n ∈ Z, and suppose n ̸∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}. A Diophantine
quadruple with the property D(n) exists if and only if n can be expressed as the difference of
squares of two integers.
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For the elements of the set S, it is unknown whether a D(n) quadruple exists. In particular,
the case of a D(−1) quadruple has proven to be especially difficult and is the subject of
numerous articles. In fact, it is now known that there is no D(−1)-quadruple ([4]) but this
was preceded by the laborious work of a number of mathematicians, over 30 years. Also, this
result implies the nonexistence of a D(−4)-quadruple, since all elements of a D(−4)-quadruple
are even.

Conjecture 6.15. There exists no D(n)-quadruple in n ∈ {−3, 3, 5, 8, 12, 20}.

It is interesting to note that the characterization of D(n) quadruples in terms of the ex-
pressibility of n as a difference of squares of two integers cannot be proven directly, but rather
using polynomial formulas for sets with the property D(n) from Theorem 3.2. However, we
can directly prove the following statement.

Proposition 6.16. If n = k2 − a2, then for every integer m, the quadruple

(a, a, (m2 + 1)a+ 2mk, (m2 + 2m+ 2)a+ 2(m+ 1)k)

has the property that the product of any two of its elements, increased by n, is a perfect square.

Proof. Directly from the following relations:

�

a · a+ n = k2

�

a[(m2 + 1)a+ 2mk] + n = (am+ k)2

�

a[(m2 + 2m+ 2)a+ 2k(m+ 1)] + n = [a(m+ 1) + k]2

�

[(m2 + 1)a+ 2mk][(m2 + 2m+ 2)a+ 2k(m+ 1)] + n = [a(m2 +m+ 1) + k(2m+ 1)]2

Remark 6.17. So far, the statement about the equivalence between the existence of a D(n)-
quadruple and n being representable as a difference of two squares has been shown to hold in the
rings of integers of many quadratic fields (both real and imaginary), as well as in some other
number fields (see [11], [16], [17],[18], [19], [20],[21]). However, in [3], examples were found of
certain rings in which the stated equivalence does not hold (where n cannot be represented as a
difference of two squares and a D(n)-quadruple exists). Nevertheless, we believe it is worthwhile
to further investigate the connection between D(n)-quadruples and differences of squares.
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6.5 Diophantine quadruples withe the D(l2)-property

Let {a, b}, 0 < a < b, be a Diophantine pair with the D(l2)-property for some l ∈ N. Hence,

ab+ l2 = k2, k ∈ N (6.34)

We are looking for x ∈ N such that {a, b, x} be a D(l2)-triple. From

ax+ l2 = y2,

bx+ l2 = z2,
(6.35)

we get, as before we get the equation of Pell’s type

by2 − az2 = l2(b− a), (6.36)

in unknowns y and z. It is easy to see that this equations is always solvable:

(y, z) = (l, l), (y, z) = (k + a, k + b).

Solutions that are generated with this initial solutions will generate possible extensions of a
Diophantine pair.

Let us solve equation (6.36). Assume that (s, t) is a fundamental solution to related Pell’s
equation y2 − abz2 = 1,

s2 − abt2 = 1 (6.37)

So,
yn

√
b+ zn

√
a = (l

√
b+ l

√
a)(s+ t

√
ab)n,

y′n
√
b+ z′n

√
a = ((k + a)

√
b+ (k + b)

√
a)(s+ t

√
ab)n,

are soutions of Pellian equation (6.36) for n ∈ N0. The sequences (yn) i (y
′
n) are binary recursive

sequences:
yn = 2syn−1 − yn−2, n ≥ 2 (6.38)

with initial conditions y0 = l i y1 = (s+ at)l, and

y′n = 2sy′n−1 − y′n−2, n ≥ 2

with initial conditions y′0 = k+ a and y′1 = s(k+ a) + at(k+ b). According to (6.35), we define
the corresponding sequences:

xn =
y2n − l2

a
, x′n =

y′n
2 − l2

a
. (6.39)

It is clear that the sets {a, b, xn} and {a, b, x′n} are Diophantine sets with the property D(l2),
but we need to show that xx, x

′
n are integers for every n ∈ N0.

Proposition 6.18. The sequences (xn) and (x′n) defined by the relations in (6.39), consist of
integers.

Proof. We will show that a | y2n − l2, for every n ∈ N0. The statement will be proved by
mathematical induction.
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1. Base case: n = 0 and n = 1,
y20 − l2 = 0,

y21 − l2 = (s+ at)2l2 − l2 = l2(s2 + 2sat+ a2t2 − 1) = l2 (abt2 + 2sat+ a2t2)︸ ︷︷ ︸
a|

. (6.40)

where the final equality follows from (6.37).

2. Inductive step: Assume that for some n ∈ N, a devides y2i − l2 for all i ≤ n. By the
recurrence relation (6.38), we have

y2n+1 − l2 = (2syn − yn−1)
2 − l2 = 4s2y2n − 4synyn−1 + y2n−1 − l2︸ ︷︷ ︸

a|

. (6.41)

Now, we will again use mathematical induction to show that a | syn − yn−1.

(a) Base case: n = 1,

sy1 − y0 = s(s+ at)l − l = l(s2 − sat− 1)

= l(abt+ sat) = a(lbt+ lst).

(b) Inductive step: Let n ∈ N and assume that a | syi − yi−1 for all i ≤ n, tj.
syi − yi−1 = ak, k ∈ Z.
We verify the statement for n+ 1. Using the recurrence relation (6.38), we get

syn+1 − yn = s(2syn − yn−1)− yn = s(syn + ak)− yn

= s2yn + aks− yn = yn(s
2 − 1) + aks

= yn · abt+ aks = a(ynbt+ ks).

Thus, we have shown that a | syn+1−yn , which implies that the expression in (6.41) is divisible
by a, completing the induction. Therefore, the initial assumption holds for all n ∈ N0, that is
(xn) consists of integers..

Let us now prove an analogous statement for the sequence (x′n), again using the principle of
mathematical induction. Since the sequences (yn) and (y′n) satisfy the same recurrence relation,
it is sufficient to verify the base case of the induction.

1. Base case: n = 0 and n = 1. We have

y′0
2 − l2 = (k + a)2 − l2 = k2 + 2ak + a2 − l2 = ab+ 2ak + a2 = a(a+ b+ 2k),

where we used identity (6.34). Furthermore:

y′1
2 − l2 = (s(k + a) + at(k + b))2 − l2

= s2(k + a)2 + a2t2(k + b)2 + 2sat(a+ k)(b+ k)− l2

= (abt2 + 1)(k + a)2 + a2t2(k + b)2 + 2sat(a+ k)(b+ k)− l2

= abt2(k + a)2 + k2 + 2ak + a2 + a2t2(k + b)2 + 2sat(a+ k)(b+ k)− l2

= abt2(k + a)2 + ab+ 2ak + a2 + a2t2(k + b)2 + 2sat(a+ k)(b+ k),

where we used (6.34) and (6.37). It is clear that a | y′1
2 − l2.

It remains to prove that a | sy′n − y′n−1 and again it is sufficient to verify the base case of
the induction:
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(a) Base case: n = 1

sy′1 − y′0 = s(s(k + a) + at(k + b))− (k + a)

= (s2 − 1)(k + a) + at(k + b)

= abt2(k + a) + at(k + b)

= a(bt2(k + a) + t(k + b)).

U [12] je Dujella pokazao da je
za sve n ∈ N0. Dokaz je tehnički složen i zahtijevao bi uvodjenje još nizova koji zadovoljavaju

jednadžbu (6.36). Drugim riječima vrijedi sljedeća tvrdnja.

Theorem 6.19. Let l ∈ Z and {a, b} be a Diophantine pair with the property D(l2). Then the
set

{a, b, xn, x′n}

has theD(l2)-property for all n ∈ N.

Proof. It can be shown

xnx
′
n + l2 =

(
yny

′
y − lk

a

)2

.

The proof is technically complex and would require introducing additional sequences (see
(6.36)).

We will demonstrate the described method on a concrete example, showing how a given
D(l2)-pair can be extended, in infinitely many ways, to a Diophantine quadruple with the same
property.

Example 7. Given is the D(16)-pair {4, 5}. So, the following parameter values are given:

a = 4, b = 5, l = 4, k = 6.

To determine the sequences (xn) and (x′n) we first need to determine the sequences (yn) and
(y′n) which are solutions to the Pell-type equation

5y2 − 4z2 = 16.

For that, we require the fundamental solution of the associated Pell equation y2 − 20z2 = 1.
It is easy to verify that the fundamental solution is (s, t) = (9, 2). The initial values of the
sequences (yn) and (y′n) are

y0 = l = 4, y1 = (s+ at)l = 68,

y′0 = k + a = 10, y′1 = s(k + a) + at(k + b) = 178.

Since x0 = 0, {a, b, x0, x′0} does not represent a proper extension. However,

x1 =
y21 − l2

a
= 1152, x′1 =

y′1
2 − l2

a
= 7917,

56



Diophantine m-tuples

does yield a proper extension. Indeed, {4, 5, 1152, 7917} is a Diophantine quadruple with the
property D(42). Indeed, uvjeriti

4 · 5 + 16 = 62,

4 · 1152 + 16 = 682,

4 · 7917 + 16 = 1782,

5 · 1152 + 16 = 762,

5 · 7917 + 16 = 1992,

1152 · 7917 + 16 = 30202.

For n = 2, 3, 4, . . . we obtain the sets:

{4, 5, 372096, 2553600},
{4, 5, 119814912, 822255621},
{4, 5, 38580030720, 264763760700}, . . .

Using the described construction for extending a D(l2)-pair to a quadruple, one can obtain
interesting examples whose elements are Fibonacci and Lucas numbers. The Fibonacci sequence
is defined by the recurrence relation

Fn+1 = Fn + Fn−1, n ≥ 1,

with initial conditions F0 = 1, F1 = 1. The Lucas sequence, denoted by (Ln) is given by the
the same recurrence relation

Ln+1 = Ln + Ln−1, n ≤ 1,

with initial conditions L0 = 2, L1 = 1.

Theorem 6.20. For all n ≥ 2, the sets

{2Fn−1, 2Fn+1, 2F
3
nFn+1Fn+2, 2Fn+1Fn+2Fn+3(2F

2
n+1 − F 2

n)}, (6.42)

{Fn−1, 4Fn+1, F
3
nFn+2Fn+3, Fn+1Fn+2Fn+4[F

2
n+2 + 2(−1)n]}, (6.43)

{4Fn−1, Fn+1, F
3
nLnLn+1, Fn+1F2n+4(F2n+2 + 2(−1)n)} (6.44)

ithe property D(F 2
n).

For all n ≥ 3, the sets

{2Fn−1, 2Fn+1, 2Fn−2Fn−1F
3
n , 2F

3
nFn+1Fn+2}, (6.45)

{Fn−1, 4Fn+1, Fn−2Fn−1Fn+1(2F
2
n − F 2

n−1), F
3
nFn+2Fn+3}, (6.46)

{4Fn−1, Fn+1, Fn−2F2n−2F2n−1, F
3
nLnLn+1} (6.47)

the property D(F 2
n)
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Theorem 6.20 can be proven by direct verification. Let us demonstrate this on the example
of the set (6.43):

Fn−1 · 4Fn+1 + F 2
n = L2

n,

Fn−1 · F 3
nFn+2Fn+3 + F 2

n = (FnF
2
n+1)

2,

Fn−1 · Fn+1Fn+2Fn+4[F
2
n+2 + 2(−1)n] + F 2

n = [Fn+1F
2
n+2 + (−1)nFn+3]

2,

4Fn+1 · F 3
nFn+2Fn+3 + F 2

n = {Fn[2Fn+1Fn+2 − (−1)n]}2,

4Fn+1 · Fn+1Fn+2Fn+4[F
2
n+2 + 2(−1)n] + F 2

n = {Fn+3[2Fn+1Fn+2 + (−1)n]}2,

F 3
nFn+2Fn+3 · Fn+1Fn+2Fn+4[F

2
n+2 + 2(−1)n] + F 2

n = {Fn[F
4
n+2 + (−1)nF 2

n+2 − 1]}2.

We have already concluded at the beginning that there exist infinitely many D(l2)- quadru-
ples in the ring of integers. However, this does not hold for every integer n that is not a perfect
square. This motivates the following conjecture:

Conjecture 6.21. Let n ∈ Z, n ̸= l2 za sve l ∈ Z. Then there exist at most finitely many
D(n)-conjectures.
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[16] Z. Franušić, Diophantine quadruples in the ring Z[
√
2], Math. Commun. 9 (2004), 141–148.
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[18] Z. Franušić, A Diophantine problem in Z[(1+
√
d)/2], Studia Sci. Math. Hungar. 46 (2009),

103–112.
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